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Abstract

Bargaining is central to economics, yet subject to rich, often contradictory assump-
tions and results. We provide a bargaining framework with independent private values
that captures systematically, as special cases, non-Coasian relevance and Coasian ir-
relevance of ownership, the possibility and impossibility of ex post efficiency, and the
presence and absence of countervailing power effects. Bargaining is modeled as an
incentive compatible mechanism that maximizes the weighted sum of the agents’ ex-
pected surpluses subject to interim individual rationality and no-deficit constraints.
We show that finding ownership structures consistent with ex post efficient bargaining
is both more difficult and less important than finding bargaining weights with that
property: there is no ownership structure that is always consistent with ex post effi-
cient bargaining whereas equal bargaining weights always are. However, bargaining
weights matter for a larger set of the environments than ownership structures. With
two agents, these results hold for both constant and decreasing marginal values when
private information pertains to the vertical intercept of the inverse demand function.
With decreasing marginal values, ex post efficiency can be achieved with extremal own-
ership with nonidentical but overlapping supports, whereas with identical distributions,
ex post efficiency requires equal ownership.
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1 Introduction

Bargaining is central to economics, yet subject to rich, often contradictory assumptions and
results. For example, the Coase Theorem states conditions under which the initial ownership
structure is irrelevant for whether the final allocation is efficient. This Coasian irrelevance
contrasts sharply with the available evidence of long-lasting effects of initial ownership.1

Similarly, notwithstanding its popular appeal, John Kenneth Galbraith’s concept of coun-
tervailing power has been controversial since the beginning. While Galbraith found it to
be of “substantial, and perhaps central, importance,” George Stigler lamented the lack of
explanation for “why bilateral oligopoly should in general eliminate, and not merely redis-
tribute, monopoly gains.”2 The impossibility results of Vickrey and Myerson-Satterthwaite
regarding ex post efficient trade with incomplete information seem difficult to reconcile with
the efficiency imposed axiomatically by Nash and Shapley for complete information bar-
gaining, which has led some authors to conclude that the quest for efficient bargaining is
“fruitless.”3 The axiomatically imposed efficiency for complete information bargaining is also
challenged by empirical evidence that bargaining breakdown is a salient feature of reality.4

In light of this, readers who wonder what lessons can be drawn from this seventy-five years
old economics literature may perhaps be forgiven.

In this paper, we provide an independent private values model that encompasses all of the
above—Coasian irrelevance and non-Coasian relevance of the ownership structure, the cen-
tal importance of Galbraith’s countervailing power and Stigler’s redistribution of monopoly
gains, and efficient bargaining and inefficient bargaining breakdown—as special cases in a
systematic way. Our general bargaining framework allows us to vary the ownership shares,
bargaining weights, and the degree of overlap between the agents’ type distributions by
shifting the support of some agents’ distributions. Taking the mechanism design approach
to bargaining that has proven productive for applied work,5 we model bargaining as a mech-
anism that maximizes the weighted sum of the agents’ expected payoffs, subject to incentive
compatibility, interim individual rationality, and a no-deficit constraint for the mechanism
designer.

1See Bleakley and Ferrie (2014), who document that the effects of initial land ownership on the Georgia
frontier only vanish after 150 years.

2See Galbraith (1954, p. 1) and Stigler (1954, p. 13). Steptoe (1993) summarizes its popular appeal
by noting that the notion of buyer power—often taken to be synonymous with countervailing power—is
sometimes embraced by courts as if it had “talismanic power.”

3Ausubel et al. (2002, p. 1934).
4Bargaining breakdown is observed 38% of the time in business-to-business used car negotiations and

45% of the time on eBay; see Larsen et al. (2024) and Backus et al. (2020).
5See, for example, Backus et al. (2019), Backus et al. (2020), Backus et al. (forth.), Larsen (2021), Larsen

et al. (2024), Larsen and Zhang (2025) and Barkley et al. (2025a,b).
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We show that, for bargaining to be ex post efficient, the ownership structure is less im-
portant than bargaining weights insofar as the ownership structure is relevant for a smaller
subset of environments than are the bargaining weights. At the same time, getting the own-
ership structure right is more difficult insofar as there is no single ownership structure that is
always consistent with ex post efficient bargaining, whereas equal bargaining weights are.6 To
be more specific, assume first constant marginal values. With two agents, ex post efficiency
requires equal bargaining weights and appropriate ownership structure, which excludes ex-
tremal ownership, if the supports overlap. Without overlapping supports, the ownership
structure is irrelevant for ex post efficiency because the ownership share of the weaker agent
only affects the amount of the asset to be bargained over. In contrast, bargaining weights
continue to matter for ex post efficiency with nonoverlapping supports as long as the exertion
of monopoly or monopsony power is inefficient. However, the set of bargaining weights that
induce ex post efficient bargaining increases as the stronger agent’s type distribution shifts
to the right and eventually encompasses all bargaining weights. Consequently, from that
point onward, neither bargaining weights nor ownership matters for ex post efficiency, so
that bargaining resembles (generalized) Nash bargaining in which bargaining weights only
affect the distribution of the gains from trade, even though information is incomplete.

We show that the main insights with two agents generalize to settings with decreasing
marginal values in which the agents’ private information pertains to the intercepts of their
linear inverse demand functions. There are, however, also subtle and surprising differences
relative to constant marginal values. For example, with identical supports, there is only
one ownership structure that is consistent with ex post efficient bargaining, whereas with
constant marginal values there is a nondegenerate interval of ownership shares that are
consistent with that. Similarly, with overlapping, nonidentical supports, the set of ownership
structures consistent with ex post efficiency need not be convex, and extremal ownership
can render bargaining ex post efficient even when supports overlap, contrasting with the
impossibility result of Myerson-Satterthwaite for constant marginal values. Nonetheless,
just as with constant marginal values, equal bargaining weights are necessary for ex post
efficient bargaining as long as the supports overlap.

The complete information approach to bargaining is sometimes deemed advantageous in
applications because of (perceived) greater tractability. Researchers with that in mind may
be inclined to defend this approach on grounds that, for the application at hand, there is
little private information. Our framework provides a way to formalize and conceptualize

6Whether bargaining is ex post efficient depends simultaneously on the ownership shares and the bar-
gaining weights. The more formal statement is that the intersection across all environments of the two-
dimensional set of ownership shares and bargaining weights is the empty set paired with equal ownership.
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the otherwise vague or vacuous notion of little private information.7 Private information is
negligible if the gap between the supports is so large that bargaining is efficient independent
of bargaining weights and the ownership structure.8

Away from ex post efficiency, we characterize the Pareto frontiers of the agents’ ex ante
expected payoffs for the case with constant and the case with decreasing marginal values.
For constant marginal values, we also show that the analysis extends directly to settings
with many agents and, for the bilateral trade setting, we provide an indirect implementation
via fee-setting mechanisms.

As mentioned, bargaining is central to economics, from the Coase Theorem (Coase, 1960)
to the concept of countervailing power (Galbraith, 1952, 1954; Stigler, 1954), the theory of the
firm (Grossman and Hart, 1986; Hart and Moore, 1990), recent merger cases (see, e.g., Lee
et al., 2021), and empirical studies such as Backus et al. (2020), Larsen (2021), Larsen and
Zhang (2025), Larsen et al. (2024), Backus et al. (forth.), Byrne et al. (2022), and Barkley
et al. (2025a,b).9 Our paper contributes to the literature on bargaining, including the strands
of literature on complete information bargaining in the tradition of Nash (1950) and Shapley
(1951), and those on incomplete information bargaining along the lines of Vickrey (1961)
and Myerson and Satterthwaite (1983), by providing and analyzing a unifying framework.10

In particular, we take the same as-if approach as Ausubel et al. (2002), Loertscher and
Marx (2022), and Choné et al. (2024), who model incomplete information bargaining as

7For example, the impossibility theorem of Myerson and Satterthwaite (1983) holds for any positive
densities whose supports overlap, no matter how skewed these are.

8In practice, this would correspond to a situation in which, say, a downstream firm’s value for a supplier’s
input is always well above the supplier’s cost, and the downstream firm has no scope for internal production,
which may be descriptive of the healthcare industry and insurers and hospitals. In contrast, in settings
in which bargaining breakdown is a real-world phenomenon, such as in certain retail and media markets, a
model with incomplete information that accommodates bargaining breakdown would seem more appropriate.
For healthcare, see e.g. Ho and Lee (2017). Bargaining breakdown in retail markets is documented by Van
der Maelen et al. (2017). For bargaining breakdown in media markets, see e.g. Frieden et al. (2020) or
the FCC press release on “FCC Begins Proceeding to Empower Consumers During Cable & Satellite TV
Blackouts,” January 17, 2024, https://docs.fcc.gov/public/attachments/DOC-399876A1.pdf.

9Avignon et al. (2025) and Demirer and Rubens (2025) examine an upstream monopsony and downstream
monopoly engaged in generalized Nash bargaining over a linear wholesale price and show that a unique
bargaining weight maximizes social surplus, which is in the same spirit as our countervailing power result
for the case of overlapping supports. (Because of the exertion of market power on both the input and
the output market, the unique social-surplus-maximizing bargaining weight of Avignon et al. (2025) and
Demirer and Rubens (2025) may not be 1/2 as in our setup with overlapping supports.) This similarity
of findings for fairly different settings—incomplete information bargaining with independent privates values
for a fixed resource here versus generalized Nash bargaining in an oligopoly setting there—is reassuring in
that it suggests that the results do not hinge on the specifics of the setups and may indeed reflect a deeper
underlying force.

10There is also a strand of literature on one-to-many bargaining—such as between a developer and land
owners—with complete information in which the principal lacks commitment power; see, for example, Xiao
(2018) or Uyanik and Yengin (2023).
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intermediated by a mechanism designer, and analyze a general partnership model (Cramton
et al., 1987) that permits heterogeneous distributions and supports and unequal bargaining
weights. In our framework, bargaining breakdown implies that bargaining is not ex post
efficient. That is, observing bargaining leading to no trade means that the problem at hand
is not such that trade always maximizes social surplus ex post.11 This suggests that methods
such as those developed by Barkley et al. (2025a) to empirically account for rejected offers
in auctions may be particularly valuable.

The paper contributes to the mechanism design literature that assumes constant marginal
values by applying the methods that Myerson (1981), Myerson and Satterthwaite (1983),
and Williams (1987) developed for settings with one-sided and two-sided private informa-
tion to partnership models, which exhibit countervailing incentives, such as Lu and Robert
(2001), Loertscher and Wasser (2019), Loertscher and Marx (2023), and Loertscher and Muir
(2025).12 Studying informed-principal problems, Mylovanov and Tröger (2014) solve for the
mechanism that is optimal for one agent in a bilateral partnership problem. The mecha-
nism that maximizes one agent’s expected payoff is encompassed as a special case of our
analysis, which sidesteps the informed-principal aspect of the problem by assuming that the
mechanism is designed and run by an intermediary.13 The partnership framework analyzed
here is a generalization of the settings with one-sided and two-sided private information in
Loertscher and Marx (2019, 2022) and the setting of Williams (1987).14

The paper also expands the mechanism design approach to incomplete information bar-
gaining to settings with decreasing marginal values where the agents’ private information
pertains to the intercept of their linear inverse demand functions. Methodologically, we show
that the underlying mechanics and many of the key results carry over from the framework
with constant marginal values. However, there are also subtle and important differences.
For example, for identical supports, there is only one ownership structure that is consistent

11To see this, notice that with nonextremal ownership, the possibility that the efficient quantity traded
is zero is a probability zero event. With constant marginal values, extremal ownership and overlapping
supports, it is ex post efficient that the seller retains its full ownership if its value exceeds the buyers, but
from Myerson and Satterthwaite (1983) we know that ex post efficient trade is impossible in this case.

12Focusing on ex post efficiency, Loertscher and Marx (2024) study variants of partnership models, some-
times also referred to as “asset market models,” in which agents’ types can be multi-dimensional, while Liu
et al. (2026) provide an empirical application of an asset market model.

13Away from extremal bargaining weights, the informed-principal problem does not appear well defined.
14Our paper generalizes the prior literature with constant marginal values by not imposing equal bargain-

ing weights, extremal ownership, identical distributions, and/or a common supports for type distributions.
For example, Myerson and Satterthwaite (1983), Cramton et al. (1987), Gresik and Satterthwaite (1989),
Makowski and Mezzetti (1993), Lu and Robert (2001), Che (2006), Figueroa and Skreta (2012), Loertscher
and Wasser (2019), and Liu et al. (2026) assume equal weights. Williams (1987) and Loertscher and Marx
(2022) allow for unequal bargaining weights but assume extremal resource ownership so that each agent is
either ex ante known to be a buyer or a seller. Loertscher and Marx (2024) allow for nonextremal ownership
and multi-dimensional types but assume equal weights.
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with ex post efficient bilateral bargaining with decreasing marginal values, whereas there is
a continuum of such ownership structures with constant marginal values (see e.g. Cramton
et al., 1987). Moreover, with decreasing marginal values and overlapping supports, bilateral
bargaining can be ex post efficient with extremal ownership, whereas this is never possible
with constant marginal values (see Myerson and Satterthwaite, 1983).

The remainder of this paper is organized as follows. Section 2 lays out the setup. In
Section 3, we derive the incomplete information bargaining mechanism for constant and de-
creasing marginal values. In Section 4, we focus on ex post efficient bilateral bargaining,
and in Section 5, we characterize the Pareto frontiers for bilateral bargaining. In Section
6, we examine agents’ preferences over bargaining weights versus ownership, discuss imple-
mentation, and provide additional results for the case of more than two agents. Section 7
concludes the paper.

2 Setup

This section first introduces the setup. Then it provides discussion and motivation for the
assumptions imposed.

Let N denote the set of agents whose cardinality is denoted by n. There is one unit
of productive resources. Agent i’s ownership share is denoted ri and satisfies ri ∈ [0, 1],
and the productive resources are entirely owned by the agents, that is,

∑
i∈N ri = 1. Each

agent i’s consumption utility when allocated q units and when its type is θi is denoted
V (θi, q). The type θi is agent i’s private information. It is an independent draw from its
type distribution Fi with support [θi, θi] and density fi that is positive on the support. We
consider two possibilities for the agents’ preferences, which we analyze separately. In the case
of constant marginal values, we have V (θi, q) = qθi, and in the case of decreasing marginal
values, we have V (θi, q) = qθi− q2/2.15 Type distributions and payoff functions are common
knowledge. We assume that V and the supports [θi, θi] are such that every agent with a
positive type has nonnegative marginal utility for every possible allocation, which means
that for every i ∈ N , V2(θi, 1) ≥ 0, where the subscript denotes the derivative with respect
to the second argument. For constant marginal values, this simply means that we require
that θi ≥ 0, whereas for decreasing marginal values, it boils down to assuming that θi ≥ 1

for all i. This means that for any feasible q and any θ > θ̂, we have V (θ, q) > V (θ̂, q), that
is, consumption utility is increasing in type. Observe that irrespective of whether marginal
values are constant or decreasing, V12 = 1 holds.

15See also Choné et al. (2024), who in an extension of their procurement problem, analyze a setting in
which the suppliers’ consumption utility is quadratic.

6



Agent i’s bargaining (or welfare) weight is denoted 𝑤i ∈ [0, 1], with at least one agent
having a positive weight. For the case with n = 2, we let r ≡ r1, so that 2’s ownership is
1− r, and, normalizing the bargaining weights by dividing by 𝑤1 + 𝑤2, we use 𝑤 to denote
agent 1’s weight, with the implication that agent 2’s weight is 1− 𝑤.

Incomplete information bargaining among the agents is modeled as being intermediated
by a possibly fictitious designer that chooses a bargaining mechanism. Specifically, a direct
mechanism is given as ⟨Q,M⟩, where Q : ×i∈N [θi, θi] → [0, 1]n satisfying

∑
i∈N Qi(θ) = 1 is

the allocation rule and M : ×i∈N [θi, θi] → Rn is the payment rule. The mechanism is called
direct because it asks every agent to report its type. Given ⟨Q,M⟩ and assuming truthful
reporting by agents other than agent i, the interim expected allocation and payment of
agent i when its report is θi are qi(θi) ≡ Eθ−i

[Qi(θ)] and mi(θi) ≡ Eθ−i
[Mi(θ)]. When its

type is θi, its allocation is Qi and its payment is Mi, agent i’s payoff from the mechanism
is V (θi, Qi) − Mi. Given ownership share ri and type θi, the value of i’s outside option is
V (θi, ri).

A prominent allocation rule is the ex post efficient allocation rule, which we denote by
Qe(θ). This allocation rule maximizes

∑
i∈N V (θi, Qi). For example, in the case of constant

marginal values, Qe
i (θ) = 1 if and only if θi > maxθ−i, and Qe

i (θ) = 0 otherwise, where
ties have probability zero and can be broken arbitrarily. We denote by qei (θi) ≡ Eθ−i

[Qe
i (θ)]

agent i’s interim expected allocation under the efficient allocation rule.
The mechanism ⟨Q,M⟩ satisfies (Bayes Nash) incentive compatibility (IC) if for all i ∈ N

and all θi, θ̂i ∈ [θi, θi],

Eθ−i
[V (θi, Qi(θ))]−mi(θi) ≥ Eθ−i

[V (θi, Qi(θ̂i,θ−i))]−mi(θ̂i).

It satisfies interim individual rationality (IR) if for all i ∈ N and all θi ∈ [θi, θi],

Eθ−i
[V (θi, Qi(θ))]−mi(θi) ≥ V (θi, ri).

An immediate implication of IC is that the interim expected allocation qi(·) is nondecreas-
ing.16

By the revelation principle, the focus on direct mechanisms that satisfy IC and IR is
without loss of generality. The problem of the designer is to choose ⟨Q,M⟩ to maximize the

16To see this, observe that IC for type θ implies that V (θ, q(θ))−m(θ) ≥ V (θ, q(θ̂))−m(θ̂), while IC for
type θ̂ implies that V (θ̂, q(θ))−m(θ) ≤ V (θ̂, q(θ̂)−m(θ̂). Subtracting the latter inequality from the former
yields V (θ, q(θ)) − V (θ̂, q(θ)) ≥ V (θ, q(θ̂)) − V (θ̂, q(θ̂)), which, because V12 > 0, holds if and only if q(·) is
nondecreasing.
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weighted sum of the agents’ ex ante expected payoffs:

max
Q,M

Eθ

[∑
i∈N

𝑤i

(
V (θi, Qi(θ))−Mi(θ)

)]
, (1)

subject to IC and IR and a no-deficit constraint, which is to say that the designer does not
pour any money into the exchange.

The description of the incomplete information bargaining mechanism is now almost com-
plete. The cases that remain to be addressed are those in which the mechanism designer
runs a budget surplus after solving the constrained maximization problem with the objec-
tive in (1) when multiple agents have the maximal bargaining weight. For these cases, the
mechanism needs to determine how that budget surplus is shared among those agents. To
this end, let η = (ηi)i∈N with ηi ∈ [0, 1],

∑
i∈N ηi = 1, and ηi = 0 if 𝑤i < maxw. Then in

case the budget surplus is positive, agent i obtains the share ηi of this surplus. Notice that if
n = 2 and 𝑤 = 1/2, then η ≡ η1 can be interpreted as agent 1’s generalized Nash bargaining
weight when agents 1 and 2 bargain over the budget surplus, with agent 2’s weight being
1− η.17

It is useful to be able to vary the degree to which the supports of the agents’ type
distributions overlap or differ. With that in mind, we use the shifting support model, which
is defined as follows. Normalize the length of the agents’ supports to 1, that is, for each i, we
assume θi = 1 + θi, and assume that whenever θi > 0, i’s distribution Fi is the same on the
support [θi, 1+θi] as its primitive distribution, denoted F P

i , whose support is [0, 1].18 That is,
for θ ∈ [θi, 1+θi], we have Fi(θ) = F P

i (θ−θi). This also means that fi(θ) = fP
i (θ−θi), where

fP
i is the density of the primitive distribution. We define µi ≡ Eθi [θi] and µP

i ≡
∫ 1

0
xdF P

i (x).
Denote the agents’ virtual type functions as

ΨS
i (θ) ≡ θ +

Fi(θ)

fi(θ)
and ΨB

i (θ) ≡ θ − 1− Fi(θ)

fi(θ)
,

where ΨS
i is agent i’s virtual cost function and ΨB

i is agent i’s virtual value function.19 The

17To see this, letting S > 0 be the budget surplus and assuming that the two agents’ outside options when
they Nash bargain over the division of the budget surplus are 0, the generalized Nash solution maximizes
pη(S − p)1−η over p ∈ [0, S], yielding p∗ = ηS as the maximizer.

18One can interpret the shift in support as reflecting a fixed cost per transaction: suppose there is a fixed
cost per transaction κ ≥ 0 and the support of agent 2’s type distribution is [θ̂, 1 + θ̂]. Then its effective
support is [θ, 1 + θ] with θ = θ̂ − κ. Under this interpretation, less (more) overlap means a smaller (bigger)
fixed cost κ.

19With constant marginal values, the virtual value function ΨB
i captures the marginal revenue associated

with agent i. To see this, consider a seller with cost c that makes a take-it-or-leave-it price offer p to agent
i. The seller’s problem is maxp∈[θi,θi]

(1− Fi(p))(p− c). The first-order condition is −fi(p)(Ψ
B
i (p)− c) = 0,

which by the standard “marginal revenue equals marginal cost” condition means that ΨB
i (p) is the marginal

8



shifting support model then implies that for θ ∈ [θi, 1 + θi], ΨS
i (θ) = ΨS,P

i (θ − θi) + θi and
ΨB

i (θ) = ΨB,P
i (θ − θi) + θi, where ΨS,P

i and ΨB,P
i denote, respectively, the virtual cost and

virtual value associated with the primitive distribution.
We conclude this section with a brief discussion of our modeling assumptions. Allow-

ing variability in the extent to which the distributions overlap and, if they do not, the
gap between them, is essential insofar as with overlapping supports and constant marginal
values, one would never obtain Coasian irrelevance of the ownership structure in light of
the impossibility theorem of Myerson and Satterthwaite (1983) nor Stigler’s mere redistri-
bution of monopoly gains. In contrast, keeping the distributions on the supports fixed is,
while convenient, not essential. Many results generalize beyond this specification. However,
the comparative statics results with respect to θ and the interpretation of changes in θ as
reflecting productivity differentials are easily and conveniently captured with this shifting-
support model. While the assumption of constant marginal values is standard in much of
the mechanism design literature, it is at odds with some empirical evidence.20 So extending
the mechanism design results and methodology to this setting is motivated both by a desire
for theoretical generality and empirical applicability.

As elaborated in Loertscher and Marx (2022), the independent private values model is
also essential insofar as it is the only known framework in which a tradeoff between social
surplus and rent extraction derives from the primitives, that is, without imposing contractual
restrictions. Similarly, the mechanism design (“as-if”) approach has the attractive feature
that results are derived from primitives in a systematic way, which contrasts with, e.g.,
dynamic bargaining games, where there are often a multiplicity of equilibria/beliefs and
where results often hinge on features such as the order of moves. The mechanism design
approach provides upper bounds on what is achievable in equilibrium and proves tractable.
The focus on IR rather than ex post individual rationality reflects an assumption of a strong
contracting environment—agents can be forced to participate even if they regret it ex post.
In spirit, this is in line with Coase’s assumption of well-defined property rights. It stacks
the deck in favor of efficient bargaining outcomes. In a similar vein, the assumption that
the designer solves the problem in (1) reflects or extends an assumption that is common in
models of complete information bargaining, namely that bargaining is efficient, subject to
constraints.

revenue associated with i’s demand. An analogous argument shows that ΨS
i captures the marginal cost

associated with Fi.
20For example, in cap-and-trade schemes with scarcity, there should always be some firms who emit zero

emissions if marginal values are constant (and distributions are continuous). But this is contradicted by the
data; see Fowlie and Perloff (2013) and Liu et al. (2026).
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3 Incomplete information bargaining

We now turn to the formal derivation of the incomplete information bargaining mechanisms,
that is, the mechanisms that solve (1) subject to the IC, IR, and no-deficit constraints. Agent
i’s interim expected net payoff from participating in the mechanism when its type is θi and
it reports its type truthfully, with “net” meaning net of the outside option V (θi, ri), is

ui(θi) ≡ Eθ−i
[V (θi, Qi(θ))]− V (θi, ri)−mi(θi). (2)

Thus, for constant marginal values, we have ui(θi) = θi(qi(θi)−ri)−mi(θi), and for decreasing
marginal values, we have ui(θi) = θi(qi(θi)− ri)−mi(θi)− Eθ−i

[Qi(θ)
2]/2 + r2i /2.

As noted in and around footnote 16, IC implies that qi(·) is nondecreasing. Further, by
IC, ui(θi) = maxθ̂i∈[θi,θi] V (θi, Qi(θ̂i,θ−i))−V (θi, ri)−mi(θ̂i), which by the envelope theorem
(Milgrom and Segal, 2002) implies that ui(θ) is differentiable almost everywhere, satisfying
u′
i(θ) = qi(θ)− ri wherever ui is differentiable, and for all θ, θ′ ∈ [θi, θi],

ui(θ) = ui(θ
′) +

∫ θ

θ′
(qi(y)− ri)dy. (3)

The relationship in (3) is customarily referred to as the payoff equivalence theorem because
it states that, up to a constant, which in (3) is ui(θ

′), agent i’s interim expected (net) payoff
is pinned down by the allocation rule. Equating the expression in (3) with the definition of
ui(θ) in (2) and solving for mi(θ) yields

mi(θi) = Eθ−i
[V (θi, Qi(θ))]− V (θi, ri)− ui(θ

′
i)−

∫ θi

θ′i

(qi(y)− ri)dy.

Using Eθ[Mi(θ)] = Eθi [mi(θi)] =
∫ θi
θi

mi(θi)dFi(θi) and changing the order of integration in
the resulting double integral yields

Eθ[Mi(θ)] = Eθ

[
V (Ψi(θi, θ

′), Qi(θ))− V (Ψi(θi, θ
′), ri)

]
− ui(θ

′), (4)

where Ψi(θi, θ
′) is the overall virtual type function with critical type θ′ defined as

Ψi(θ, θ
′) ≡

 ΨS
i (θ) if θ ∈ [θi, θ

′),

ΨB
i (θ) if θ ∈ [θ′, θi].

(5)

Note next that if, given Q, there exists a ω ∈ [θi, θi] such that qi(ωi) = ri, then ωi

is a worst-off type of agent i, that is, ωi ∈ argminθ∈[θi,θi]
ui(θ). To see this, recall that
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u′
i(θ) = qi(θ)−ri. Because qi is nondecreasing, u′

i(ωi) = 0 characterizes the global minimum.
This means that an agent’s worst-off type varies nontrivially with the allocation rule. For
example, for constant marginal values and [θi, θi] = [0, 1], we have ωi = r2i if qi(θ) = θ1/2 and
ωi = r1/2 if qi(θ) = θ2. This nontrivial endogeneity of the worst-off types to the allocation
rule constitutes a major complication for the designer’s problem because it means that the
worst-off types (for whom the IR constraints will bind) depend on the allocation rule that
the designer chooses, and so the optimal allocation rule will, in turn, depend on the worst-off
types.21

As in standard mechanism design problems, even though the worst-off type depends on
the allocation rule, it is convenient to express Eθ[Mi(θ)] relative to a worst-off type of agent
i rather than an arbitrary type θ′ because this is a type for which the IR constraint will be
tightest. Thus, we can write

Eθ[Mi(θ)] = Eθ

[
V (Ψi(θi, ωi), Qi(θ))− V (Ψi(θi, ωi), ri)

]
− ui(ωi).

Given worst-off type ωi ∈ Ωi(Q) for agent i, the IR constraint amounts to the requirement
that ui(ωi) ≥ 0, and the no-deficit constraint requires that

∑
i∈N Eθ[Mi(θ)] ≥ 0. The

associated Lagrangian is then

L =
∑
i∈N

𝑤iEθ[V (θi, Qi(θ))−Mi(θ)] + ρ
∑
i∈N

Eθ[Mi(θ)] +
∑
i∈N

γiui(ωi),

where ρ is the Lagrange multiplier on the no-deficit constraint and γi ≥ 0 is the multiplier
on agent i’s IR constraint. Defining agent i’s weighted virtual type with weight α ∈ [0, 1] by

Ψi,α(θ, x) ≡ αθi + (1− α)Ψi(θ, x), (6)

the Lagrangian can conveniently be written as

L = ρEθ

[∑
i∈N

(
V (Ψi,

𝑤i
ρ
(θi, ωi), Qi(θ))− V (Ψi,

𝑤i
ρ
(θi, ωi), ri)

)]
+
∑
i∈N

(𝑤i − ρ+ γi)ui(ωi) +
∑
i∈N

ri𝑤iEθi [θi].

Observe that, ignoring “irrelevant” agents that have no initial ownership and are never al-
located resources, if ρ < maxw, then the solution is unbounded because for ρ < maxw,

21This is different for a mechanism design problem like an auction setting where by IC alone there is
always one type—the lowest—that is worst-off. For example, if the seller’s cost is 0 and types are uniformly
distributed on [0, 1], then the worst-off type is 0 in an efficient auction. In an optimal auction, the set of
worst-off types is [0, 1/2] because seller’s optimal reserve is 1/2. Evidently, type 0 is still a worst-off type.
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L would be maximized by giving an agent with the maximum weight an infinite amount of
money. Consequently, any solution satisfies ρ ≥ maxw. Alternatively, if there exist “irrele-
vant” agents, then we require that ρ ≥ max{𝑤i | i s.t. ri > 0 or Qi(θ) > 0 for some θ}.22

The standard approach in mechanism design problems is to maximize
Eθ

[∑
i∈N V (Ψi,

𝑤i
ρ
(θi, ωi), Qi(θ))

]
pointwise over Q. Leaving temporarily aside the problem

that ωi and thus ui(ωi) vary with Q, and taking the example of constant marginal values,
pointwise maximization would mean allocating the resources to the agent with the high-
est weighted virtual type Ψi,

𝑤i
ρ
(θ, ωi). However, if agent i has an interior worst-off type

ωi ∈ (θi, θi) and the weight in its virtual type is less than 1, i.e., 𝑤i

ρ
∈ [0, 1), then Ψi,

𝑤i
ρ
(θ, ωi)

is nonmonotone with a downward discontinuity at ωi, resulting in a violation of the mono-
tonicity constraint of the allocation rule imposed by IC. Monotonicity is also violated if Fi

is such that ΨS
i,𝑤i/ρ

or ΨB
i,𝑤i/ρ

is nonmonotone in the relevant range (a necessary condition
for which is that ΨS

i (θ) or ΨB
i (θ) be nonmonotone). In any of these cases, the solution in-

volves ironing agent i’s weighted virtual type function as in Myerson (1981). For example,
for constant marginal values, the resources are allocated to an agent with the highest ironed
weighted virtual type, which for agent i is denoted by Ψi,

𝑤i
ρ
(θ, ωi), with ties broken through

randomization that maintains agents’ worst-off types. We similarly use Ψ
S

i and Ψ
B

i to de-
note agent i’s ironed virtual cost and virtual value functions, and similarly for the weighted
versions of these.

The deeper problem, then, is that the interdependence of Q and ω = (ωi)i∈N raises the
question of the applicability of the standard mechanism design methodology, whereby the
objective is first maximized over monotone allocation rules and then the payment rule is
derived based on the optimal allocation rule and the payoff equivalence theorem. Fortu-
nately, the answer is affirmative. As observed by Loertscher and Wasser (2019), the optimal
mechanism in a partnership model is characterized by a saddle point (Q∗,ω∗).23 Specifically,
Q∗ is a monotone allocation rule that maximizes Eθ

[∑
i∈N V (Ψi,

𝑤i
ρ
(θi, ω

∗
i ), Qi(θ))

]
and ω∗

is a minimizer of Eθ

[∑
i∈N

(
V (Ψi,

𝑤i
ρ
(θi, xi), Q

∗
i (θ)) − V (Ψi,

𝑤i
ρ
(θi, xi), ri)

)]
over x = (xi)i∈N

with xi ∈ [θi, θi].
To complete the characterization of the bargaining mechanism, we must also satisfy the

no-deficit constraint. This is always possible because by choosing Qi(θ) = ri for all i and
all θ, the designer obtains revenue of 0. Moreover, in the limit as ρ goes to infinity, the
allocation rule approaches that for the mechanism that maximizes the designer’s expected
revenue. As just observed, the designer’s maximized expected revenue must be nonnegative,

22An agent i with ri = 0 and Qi(θ) = 0 for all θ has ui(ωi) = 0 (all types are equally worst-off), and so
such an agent essentially drops out of the Lagrangian and, therefore, does not constrain ρ.

23They assume equal weights and identical supports, that is, 𝑤i = 𝑤 and [θi, θi] = [0, 1] for all i ∈ N , but
these insights extend to heterogeneous weights and supports and to decreasing marginal values.
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and it is positive whenever the problem is such that there is a positive measure of types with
mutually beneficial trades. By the continuity and monotonicity of the problem, this then
guarantees that there is a smallest value of ρ that satisfies the no-deficit constraint.

Theorem 1. The allocation rule of the incomplete information bargaining mechanism is the
pointwise maximizer of

∑
i∈N V (Ψi,

𝑤i
ρ
(θi, ωi), Qi(θ)), where ωi is a worst-off type for agent i

and ρ is the smallest feasible value such that the no-deficit constraint is satisfied, subject to
feasibility, i.e., Qi(θ) ∈ [0, 1] and

∑
i∈N Qi(θ) = 1.

For constant marginal values, Theorem 1 has the following implication:

Proposition 1. With constant marginal values, the incomplete information bargaining allo-
cation rule assigns the resources to an agent with the maximum ironed weighted virtual type,
maxi∈N Ψi,

𝑤i
ρ
(θi, ωi), with a tie-breaking rule that ensures that ωi is a worst-off type for each

agent i and where ρ is equal to the smallest feasible value such that the no-deficit constraint
is satisfied. For n = 2, ties between agents can be broken arbitrary, and if the virtual values
and virtual costs are increasing, then ties between agents’ ironed weighted virtual types occur
with probability zero.

Proof. For a proof of the final sentence, see the Online Appendix.

The case of constant marginal values described in Proposition 1 has the bang-bang prop-
erty that, with probability 1, the allocation to agent i is either 0 or 1. For decreasing marginal
values, we normalize the support of agent 1 type distribution to [1, 2] and that of agent 2

to [θ, 1 + θ] with θ ≥ 1. The assumption that the lower bound of support is 1 ensures that
each agent has a nonnegative marginal value no matter what its type realization, even if it
is allocated the entire resource, that is, it implies that there is scarcity.

Using a water-filling algorithm (see, e.g., Boyd and Vandenberghe, 2004, p. 245), Theorem
1 has the following implication for decreasing marginal values:

Proposition 2. With decreasing marginal values, the incomplete information bargaining
allocation rule is

Qi(θ) = max{0,Ψi,
𝑤i
ρ
(θi, ωi)− ζ}

with ζ such that
∑

i∈N Qi(θ) = 1, where ωi is a worst-off type for each agent i and ρ is
equal to the smallest feasible value such that the no-deficit constraint is satisfied. Letting
N+ be the set of agents with a positive allocation, i.e., Qi(θ) > 0 if and only if i ∈ N+,
then ζ = 1

|N+|
∑

j∈N+ Ψ
j,

𝑤j
ρ
(θj, ωj) − 1

|N+| . If n = 2, then Q1(θ) = min{1,max{0, 1
2
(1 +

Ψ1,
𝑤1
ρ
(θ1, ω1)−Ψ2,

𝑤2
ρ
(θ2, ω2)}} and Q2(θ) = 1−Q1(θ).
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Interestingly, ties are not an issue in the decreasing marginal values case. For example,
if all agents have the same ironed weighted virtual types, then each agent receives an equal
share of the resources. The continuous allocation rule and absence of tie-breaking renders
the case of decreasing marginal values in some ways more tractable than the case of constant
marginal values.

Further, as we now show, for both constant and decreasing marginal values, we have
equivalence of Bayesian and dominant strategy incentive compatibility. While this result is
known for the case of constant marginal values, it is, to our knowledge, new for the case of
decreasing marginal values.

Lemma 1. With both constant and decreasing marginal values, Bayesian incentive com-
patibility (BIC) and dominant-strategy incentive compatibility (DIC) are equivalent, that is,
given BIC and interim IR mechanism ⟨Q,M′⟩, there exists M such that ⟨Q,M⟩ satisfies
DIC and interim IR and has the same expected budget surplus under binding IR for agents’
worst-off types as does ⟨Q,M′⟩.

Proof. See Appendix A.

Finally, to see that there is no benefit from using randomization ex post, as noted,
standard arguments imply that IC (i.e., BIC) requires qi to be monotone and that the
payment rule is such that the mechanism satisfies IC. So for IC, volatility plays no role—all
that matters are the interim expected allocations qi. Moreover, from a revenue perspective
nothing good can come from ex post randomization because increasing variance decreases
revenue. To be more precise, denoting by

σQi
(θ) ≡ Eθj [(Qi(θ, θj)− qi(θ))

2] = Eθj [(Qi(θ, θj)
2]− qi(θ)

2

the expected variance of i’s allocation given its type θ, the expected payment of i when of
type θ can be written as

mi(θ) = θqi(θ)−
σQi

(θ) + qi(θ)
2

2
−
∫ θ

θ̂

qi(y)dy − (θri − r2i /2)− ui(θ̂),

which is decreasing in σQi
(θ).

4 Ex post efficient bilateral bargaining

With the general description of the incomplete information bargaining mechanism in hand,
we now analyze under which conditions bilateral bargaining is ex post efficient. As men-
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tioned, for the model with constant marginal values, we set [θ1, θ1] = [0, 1], which means that
F1 is identical to agent 1’s primitive distribution, and θ2 = θ ≥ 0 (and θ2 = 1 + θ). With
decreasing marginal values, we let [θ1, θ1] = [1, 2] and θ2 = θ ≥ 1 (and, again, θ2 = 1 + θ).
We say that bargaining is ex post efficient if given r, 𝑤, θ, and the agents’ type distributions,
the allocation rule of the incomplete information bargaining mechanism is Qe(θ).

For k ∈ {c, d}, corresponding to constant and decreasing marginal values, respectively,
let

Ek(θ) ≡ {(r,𝑤) ∈ [0, 1]2 | bargaining is ex post efficient}

denote the set of ownership structures and bargaining weights such that incomplete infor-
mation bargaining is ex post efficient. In principle, this set can be empty. Let

Wk(θ) ≡ {𝑤 | ∃r ∈ [0, 1] s.t. bargaining is ex post efficient}

and
Rk(θ) ≡ {r | ∃𝑤 ∈ [0, 1] s.t. bargaining is ex post efficient}

denote the (also possibly empty) sets of bargaining weights and ownership structures con-
sistent with incomplete information bargaining being ex post efficient. By construction,
Ek(θ) = Wk(θ) ∪Rk(θ).

We also use

W0
k(θ) ≡ {𝑤 | ∃r ∈ (0, 1] s.t. bargaining is ex post efficient}

to denote the set bargaining weights consistent with ex post efficiency when agent 1 has a
positive ownership share, that is, r > 0. This set is particularly relevant for values of θ

sufficiently large that under ex post efficiency, agent 2 consumes everything no matter what
the type realization is. Formally, define τ ek with k ∈ {c, d} to be the threshold such that for
θ ≥ τ ek, we have Qe

2(θ) = 1 for all θ ∈ [θ1, θ1]× [θ, 1 + θ]. When θ ≥ τ ek, the set W0
k(θ) is of

interest because then for r = 0, the initial allocation is already ex post efficient.

4.1 Constant marginal values

We first consider the case of constant marginal values. If θ ≥ τ ec, then for any r ∈ [0, 1] any
trade that occurs under ex post efficiency ships resources from agent 1 to agent 2. (This
immediately follows from the construction of τ ec.) Therefore, for ex post efficiency agent 1’s
ownership r determines the size of the asset over which the two agents negotiate and thus
effectively corresponds to a rescaling of an asset of size 1 to an asset of size r. Agent 1 is
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the sole owner and seller of this rescaled asset, with agent 2 being the buyer. Of course,
if r = 0, there is nothing to be negotiated over. Consequently, for θ ≥ τ ec, the ownership
structure r has no impact on whether incomplete information bargaining is ex post efficient.
As a result, we have Rc(θ) = [0, 1] for all θ ≥ τ ec.

This also means that, for θ ≥ τ ec and r > 0, whether bargaining is ex post efficient
depends only on the bargaining weights 𝑤 and 1 − 𝑤. If agent 1 has all the bargaining
power, that is, 𝑤 = 1, then by Proposition 1 trade occurs if and only if ΨB

2 (θ2) ≥ θ1, which
is satisfied for all types if and only if ΨB

2 (θ) ≥ 1. Conversely, if agent 2 has all the bargaining
power, that is, 𝑤 = 0, then trade occurs if and only if θ2 ≥ Ψ

S

1 (θ1), which holds for all types
if and only if θ ≥ Ψ

S

1 (1). As seems intuitive and is formally shown in the proof of the lemma
below, extremal bargaining weights impose the tightest conditions for bargaining to be ex
post efficient, which means that Ψ

B

2 (θ) ≥ 1 and θ ≥ Ψ
S

1 (1) are necessary and sufficient for
ex post efficient bargaining for all 𝑤 ∈ [0, 1]. This allows us to define the threshold value for
θ such that bargaining is ex post efficient. Specifically, defining

τ ∗c(0) ≡ Ψ
S

1 (1), τ ∗c(1) ≡ τ ec −Ψ
B,P

2 (0), and τ ∗c ≡ max{τ ∗c(0), τ ∗c(1)},

we have the following result:

Lemma 2. With constant marginal values and θ ≥ τ ec, bargaining is ex post efficient for all
𝑤 ∈ [0, 1] if and only if θ ≥ τ ∗c .

Proof. See Appendix A.

For example, if ΨS
1 and ΨB

2 are monotone, then the threshold value for θ defined in
Lemma 2 can be written as τ ∗c = τ ec + max

{
1

f1(1)
, 1
fP
2 (0)

}
. If θ < τ ∗c , then bargaining power

matters for both the size and the distribution of surplus.24 Conversely, and equivalently, we
can define threshold values for the agents’ bargaining weights. For any θ ∈ [1, τ ∗c(0)], let 𝑤(θ)
be such that Ψ

S

1,
𝑤(θ)

1−𝑤(θ)
(1) = θ, and otherwise let 𝑤(θ) = 0. And for any θ ∈ [1, τ ∗c(1)], let

𝑤(θ) be such that 1 = Ψ
B

2,
1−𝑤(θ)
𝑤(θ)

(θ), and otherwise let 𝑤(θ) = 1. Then we have the following
result:

Lemma 3. For θ ≥ 1 and r > 0, bargaining is ex post efficient if and only if 𝑤 ∈ [𝑤(θ),𝑤(θ)],
where 𝑤(θ) and 𝑤(θ) exist and are unique, with 𝑤(1) = 𝑤(1) = 1/2, 𝑤(θ) decreasing, and
𝑤(θ) increasing.

24This generalizes to a setup with interior ownership the insight from Loertscher and Marx (2022) that
the incomplete information framework has the property that bargaining weights do not only affect the
distribution but also the size of expected surplus.
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Proof. See Appendix A.

If ΨS
1 is increasing, then 𝑤(θ) = 1+(1−θ)f1(1)

2+(1−θ)f1(1)
, and if ΨB

2 is increasing, then 𝑤(θ) =
1

2+(1−θ)fP
2 (0)

. This implies that, for ΨS
1 and ΨB

2 monotone, 𝑤(θ) is concave for θ ∈ [1, τ ∗c(0)]

and 𝑤(θ) is convex for θ ∈ [1, τ ∗c(1)]. This is illustrated in Figure 1(c). It assumes that both
distributions are uniform, which implies monotone virtual types. For the uniform-uniform
case, we have τ ∗c(0) = τ ∗c(1) = 2, but with other distributions one can have τ ∗c(0) ̸= τ ∗c(1).

(a) Ex post efficiency inducing set Ec(θ)

(b) Ex post efficiency permitting set Rc(θ)

CGK

FS
Che

0. 0.2 0.4 0.6 0.8 1. 1.2
θ

0.21

0.79

1
r

ℛc(θ)

ℛc(θ)

MS

MS

(c) Ex post efficiency permitting set W0
c (θ)

0. 0.5 1. 1.5 2.
θ

0.25

0.5

0.75

1.
w

c
0(θ)

Figure 1: Ex post efficiency permitting ownership structures and bargaining weights with constant marginal
values. Assumes uniformly distributed types for agent 1 on [0, 1] and for agent 2 on [θ, 1 + θ].

With this backdrop, we can now characterize the set Ec(θ):

Theorem 2. With constant marginal values, we have for θ ∈ [0, τ ec),

Ec(θ) = ([r(θ), r(θ)], 1/2), (7)

where (i) there exists decreasing r∗(θ) such that 0 < r(θ) < r∗(θ) < r(θ) < 1; and (ii)
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limθ↑τec r(θ) = 0 = limθ↑τec r(θ). And, for θ ≥ τ ec, we have

Ec(θ) = ((0, 1], [𝑤(θ),𝑤(θ)]) ∪ (0, [0, 1]),

where (iii) 𝑤(θ) is decreasing and 𝑤(θ) is increasing; (iv) there exists τ ∗c > τ ec such that for
all θ ∈ (τ ec, τ

∗
c), 0 ≤ 𝑤(θ) < 𝑤(θ) ≤ 1, where at least one of the weak inequalities is strict,

and for all θ ≥ τ ∗c, 0 = 𝑤(θ) and 𝑤(θ) = 1; and (v) limθ↓τec 𝑤(θ) = 1/2 = limθ↓τec 𝑤(θ).
Moreover, if ΨS

1 is increasing, then 𝑤(θ) is strictly concave whenever it is strictly decreasing,
and if ΨB,P

2 is increasing, then 𝑤(θ) is strictly convex whenever it is strictly increasing.

Proof. See Appendix A.

Figure 1 illustrates Theorem 2. Panel (a) shows Ec(θ), panel (b) depicts Rc(θ), and panel
(c) depicts W0

c (θ) as functions of θ for the case in which F1 and F2 are uniform. As indicated
in panel (b) with the notation “MS,” the result that when supports overlap (i.e., θ < 1),
ex post efficiency is not possible if r ∈ {0, 1} was shown by Myerson and Satterthwaite
(1983); and as indicated with the notation “CGK, Che, FS,” the result that with identical
supports (i.e., θ = 0), ex post efficiency is possible for an interval of ownerships around
the ownership that equalizes agents’ worst-off types was shown by Cramton et al. (1987),
Che (2006), and Figueroa and Skreta (2012). Related to panel (c), our illustration is for the
uniform-uniform case, where ΨS

1 (1) = 2 = 1−ΨB,P
2 (0). If, instead, ΨS

1 (1) ̸= 1−ΨB,P
2 (0), then

one of the curves emanating from (1, 1/2) hits the boundary before the other. Specifically, if
ΨS

1 (1) < 1−ΨB,P
2 (0), then 0 would be an element of W0

c (θ) for some θ < τ ∗c , while 1 would
be in W0

c (θ) only for θ ≥ τ ∗c , and conversely if ΨS
1 (1) > 1−ΨB,P

2 (0).
An immediate implication of Theorem 2 is that, for all θ ≥ 0, Ec(θ) is nonempty. The

theorem also allows us to formalize the notions that bargaining weights are more important
for ex post efficiency than the ownership structure insofar as bargaining weights matter for
a larger set of the parameter space—for all θ < τ ∗c , there are 𝑤 ∈ [0, 1] such that bargaining
is not ex post efficient, whereas ownerships r ∈ [0, 1] such that bargaining fails to be ex post
efficient only exist for θ < 1—and that, at the same time, getting bargaining weights “right”
is easier than the ownership structure insofar as

∩θRc(θ) = ∅ and ∩θ Wc(θ) = {1/2},

which is to say that there is no ownership structure that is always part of Ec(θ), whereas
𝑤 = 1/2 always is. This last result implies that in this framework there is no efficiency–
equality tradeoff.

A priori, it seems possible and maybe even intuitive that bargaining weights and own-

18



ership shares are, somehow, substitutes in the sense that an increase in r can be offset by
a commensurate decrease in 𝑤 to maintain ex post efficiency, Theorem 2 shows that this is
not the case for ex post efficiency: For θ ≤ 1, Wc(θ) only contains 𝑤 = 1/2, while for θ > 1,
whether bargaining is ex post efficient is independent of r, provided r is positive.

The simple economics of incomplete information bargaining

As stated in Theorem 2 and illustrated in Figure 1, our framework of incomplete information
bargaining encompasses Galbraith’s notion of countervailing power for θ < τ ∗c , and Stigler’s
mere redistribution of monopoly gains otherwise, and it encompasses non-Coasian relevance
of the distribution of property rights for θ < τ ec, and otherwise Coasian irrelevance. In
particular, for θ ≤ τ ec, 𝑤 = 1/2 is necessary for bargaining to be ex post efficient, which thus
provides a vindication of sorts of Galbraith (1954, p. 1), who, as mentioned, thought it to be
of “substantial, perhaps central, importance” to economics.25 In contrast, θ ≥ τ ∗c captures
situations that are reflective of the skepticism expressed, for example, by Stigler (1954, p.
13) that changes in bargaining power “merely redistribute, monopoly gains.” Moreover, if
countervailing power is absent, that is, if θ ≥ τ ∗c , then incomplete information bargaining is
effectively the same as complete information bargaining.26 This latter case—that is, θ ≥ τ ∗c—
also provides an instance and a formalization of “little” private information. Even though
each agent is still privately informed about its type, the bargaining outcome is the same as
that between a seller with cost 1 per unit—agent 1—who owns an asset of size r and has the
generalized Nash bargaining weight η and agent 2, the buyer, whose value and generalized

25The notion of countervailing power, introduced by Galbraith (1952), has widespread appeal but has been
difficult to conceptualize in models with complete information without restricting the contracting space. It
features prominently in antitrust practice. For example, OECD (2011, pp. 50–51) and OECD (2007, pp.
58–59) raise the possibility of a role for collective negotiation and group boycotts in counterbalancing the
market power of providers of payment card services. In other examples, the U.S. DOJ and FTC recognize
the potential benefits from allowing physician network joint ventures in their 1996 “Statement of Antitrust
Enforcement Policy in Health Care.” Krueger (2018) discusses the benefits to workers of market features
that boost worker bargaining power and counterbalance monopsony power. As another case in point, the
Australian competition authority “has identified a range of market failures resulting from ... strong bargaining
power imbalance and information asymmetry ... which ultimately cause inefficiencies” (ACCC Dairy Inquiry,
2018, p. xii). In a labor market context, equalization of bargaining weights between agents and workers may
be achieved by allowing the workers to form unions. In healthcare, doctors may increase their bargaining
power vis-à-vis insurance companies by giving up their independence and becoming employees of large
hospital chains; see, for example, “Doctors Say Dealing With Health Insurers Is Only Getting Worse,” Wall
Street Journal , December 12, 2024.

26A qualification regarding the equivalence of complete and incomplete information bargaining for θ ≥ τ∗c
applies when, at an ex ante stage, the agents make noncontractible investments that improve their type
distributions. With incomplete information, efficient bargaining implies efficient investment whereas with
complete information, hold-up from bargaining induces inefficient investments as in the theory of the firm
in the tradition of Grossman and Hart (1986) and Hart and Moore (1990). For formalizations of this point,
see, for example, Milgrom (2004), Krähmer and Strausz (2007), and Liu et al. (2026).
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Nash bargaining weight are θ and 1− η if 𝑤 = 1/2, with the payment being r(ηθ+ (1− η));
if 𝑤 < 1/2, then the payment is r, and if 𝑤 > 1/2, then the payment is rθ.27

The intuition for why 𝑤 = 1/2 is necessary for ex post efficient bargaining if θ ≤ 1 is
simple. Away from equal weights, the incomplete information bargaining mechanism discrim-
inates against the agent with the smaller weight because, by Proposition 1, the allocation
prioritizes agents on the basis of the weighted (ironed) virtual types. For θ ≤ 1, with un-
equal bargaining weights, this prioritization differs from prioritizing agents on the basis of
their true types. As the gap between the supports, that is, θ − 1 > 0, increases, unequal
bargaining weights lead to less and eventually to no discrimination in the allocation rule.
That Rc(θ) is a nonempty, convex subset of (0, 1) for θ ∈ [0, 1) follows from the fact that
if r is such that, under ex post efficiency, both agents have the same worst-off types, then
revenue under ex post efficiency subject to IR is maximized and positive.28 By continuity of
this revenue function, ex post efficiency is then also possible for a convex set of ownership
structures around the revenue-maximizing one. As θ approaches 1 from below, the only way
that both agents can have the same worst-off type is if their worst-off types approach 1,
which requires that r approaches 0 (in which case revenue under ex post efficiency is simply
0). This explains (iv). Part (v) follows because when θ ≥ 1, ex post efficiency can easily be
achieved, for example, with a posted-price mechanism with a price between 1 and θ.

4.2 Decreasing marginal values

With decreasing marginal values, the ex post efficient allocation rule Qe(θ) maximizes∑
i∈N (Qiθi− 1

2
Q2

i ). Given the adjusted supports of [1, 2] for agent 1’s distribution and [θ, 1+θ]

with θ ≥ 1 for agent 2, this implies that

Qe
1(θ) = max

{
0,

1 + θ1 − θ2
2

}
and Qe

2(θ) = 1−Qe
1(θ). The expected budget surplus under binding IR for agents’ worst-off

types and ex post efficiency is

Πd(r) ≡
∑
i∈N

Eθ

[
Ψi(θi, ωi)Q

e
i (θ)−

Qe
i (θ)

2

2

]
− ω1r − ω2(1− r) + r2/2 + (1− r)2/2,

27In contrast, away from ex post efficiency, it is possible for there to be trade from agent 2 to agent 1
with nonoverlapping supports. We return to this in Section 5.1.

28This insight is the driving force for why, in Cramton et al. (1987) (who assume identical distributions),
the set of ex post efficiency permitting ownership structures is symmetric around equal ownership. General-
izations of this insight to asymmetric distributions with identical supports were obtained by Che (2006) and
Figueroa and Skreta (2012). The proof of Proposition 1 shows that it extends to heterogeneous supports.
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where ωi is determined as follows: if ri ≤ qei , then ωi = θi; if qei (θi) ≤ ri, then ωi = θi; and
otherwise qei (ωi) = ri.

The effects of this difference are apparent in Figure 2(b), where, in contrast to Rc(θ) in
Figure 1(b), Rd(θ) is not convex for all θ.

Like with constant marginal values, there is a threshold τ ed such that Qe
1(θ) = 0 for all

θ ∈ [1, 2]× [θ, 1 + θ] if and only if θ ≥ τ ed. Because Qe
1(θ) = max{0, 1+θ1−θ2

2
}, Qe

1(θ) = 0 for
all θ is equivalent to θ2 ≥ 1 + θ1 for all θ, which is equivalent to29

θ ≥ τ ed = 3.

Consequently, if θ ≥ τ ed, then the ownership structure does not affect whether bargaining is
ex post efficient, but only how much is traded—agent 1’s share r—under ex post efficiency.

Theorem 3 below, which is the counterpoint to Theorem 2, is of interest both for its
similarities and its differences relative to Theorem 2.

Theorem 3. With decreasing marginal values, we have Ed(1) = (
1+µP

1 −µP
2

2
, 1/2) and for

θ ∈ (1, τ ed),
Ed(θ) = ((r(θ), r(θ)), 1/2) ∪ ((rtop(θ), 1), 1/2),

where (i) there exists τ̂ > min{µP
1 + 1, 2 − µP

2 } such that for all θ ∈ (1, τ̂), there exists
decreasing r∗(θ) with 0 < r(θ) < r∗(θ) < r(θ) ≤ 1; and (ii) there exists τ ∈ (1, 2) such that
there exists continuous rtop(θ) satisfying rtop(τ) = 1 and for all θ ∈ (τ , τ ed), rtop(θ) ∈ (0, 1).
For θ ≥ τ ed, the characterization is the same as for θ ≥ τ ec in Theorem 2, replacing τ ec with
τ ed and τ ∗c with τ ∗d.

Proof. See Appendix A.

As Theorem 3 shows, key characteristics of the ex post efficiency permitting set are pre-
served with decreasing marginal values, but there are differences. As a point of commonality,
for all θ ≥ τ ed, Rd(θ) = [0, 1]. In a notable difference, as discussed above, the set Ed(θ) is
no longer necessarily convex for all θ. Theorem 3 establishes that Ed(θ) is nonempty for
θ ∈ (1, τ̂ ] ∪ [τ ,∞), but leaves the possibility that it is empty for some θ, although it is
nonempty for all θ in the uniform-uniform case, as illustrated in Figure 2.

We further detail the effects of bargaining power for the case of decreasing marginal
values and compare those to the case of constant marginal values. With decreasing marginal
values, ex post efficiency requires that for θ ≥ τ ed, Q1(θ) = 0 for all θ, which requires

29In contrast to the constant marginal values model, with decreasing marginal values, no overlap in the
marginal values is different from no overlap in the type distributions, so τed differs from the upper bound of
support of agent 1’s type distribution.
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(a) Geometry of efficient bargaining: Ed(θ)

(b) Ex post efficiency permitting set Rd(θ)
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(c) Ex post efficiency permitting set W0
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Figure 2: Ex post efficiency permitting ownership structures and bargaining weights with decreasing marginal
values. Assumes uniformly distributed types for agent 1 on [1, 2] and for agent 2 on [θ, 1 + θ] with θ ≥ 1.

that 1
2
(1 + Ψ

S

1, 𝑤
max{𝑤,1−𝑤}

(θ1) − Ψ
B

2, 1−𝑤
max{𝑤,1−𝑤}

(θ2)) ≤ 0 for all θ.30 Consequently, for 𝑤 = 1,

1 + θ1 − Ψ
B

2 (θ2) ≤ 0 has to hold for all θ. This means that Ψ
B

2 (θ) ≥ 3 has to hold. The
threshold value for θ, denoted by τ ∗d(1), is then defined by Ψ

B

2 (τ
∗
d(1)) = 3, which means that

τ ∗d(1) = 3−Ψ
B,P

2 (0). Recalling that for decreasing marginal values, we have τ ed = 3, it follows
that

τ ∗d(1) = τ ed −Ψ
B,P

2 (0),

analogous to the case of constant marginal values. Similarly, when agent 2 has all the
bargaining power, that is, 𝑤 = 0, ex post efficiency requires 1 + Ψ

S

1 (θ1) − θ2 ≤ 0 for all θ.
Thus, ex post efficiency requires θ ≥ 1+Ψ

S

1 (2), giving us the threshold τ ∗d(0) ≡ 1+Ψ
S

1 (2) =

2 + Ψ
S,P

1 (1). It follows that
τ ∗d(0) = τ ed − 1 + Ψ

S,P

1 (1),

which is again analogous to the case of constant marginal values. Further, as before, the
case of 𝑤 ∈ (0, 1) is intermediate, so the threshold τ ∗d ≡ max{τ ∗d(0), τ ∗d(1)} is sufficient. As

30Because agent 1 is always a seller, its worst-off type is ω1 = 2; and because agent 2 is always a buyer,
its worst-off type is ω2 = θ. Thus, Ψ1,α(θ1, ω1) = ΨS

1,α(θ1) and Ψ2,α(θ2, ω2) = ΨB
2,α(θ2).
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in the case of constant marginal values, if the virtual cost and virtual value are monotone,
then τ ∗d = τ ed +max{ 1

fP
1 (1)

, 1
fP
2 (0)

}.
We summarize these results in Proposition 3, which highlights commonalities between

the setups with constant versus decreasing marginal values.

Proposition 3. For k ∈ {c, d} for constant and decreasing marginal values, respectively,
(i) for θ ∈ [θ1, τ

e
k), bargaining is ex post efficient if and only if 𝑤 = 1/2 and r is such that

Πk ≥ 0; (ii) for θ ∈ [τ ek, τ
∗
k), bargaining is ex post efficient if and only if either r = 0 or 𝑤

satisfies
Ψ

S,P

1, 𝑤
1−𝑤

(1) ≤ 1 + θ − τ ek and Ψ
B,P

2, 1−𝑤
𝑤
(0) ≥ τ ek − θ,

which, if ΨS,P

1 (1) = ΨS,P
1 (1) and Ψ

B,P

2 (0) = ΨB,P
2 (0), can be written as

1 + (τ ek − θ)fP
1 (1)

2 + (τ ek − θ)fP
1 (1)

≤ 𝑤 ≤ 1

2 + (τ ek − θ)fP
2 (0)

;

and (iii) for θ ≥ τ ∗k, bargaining is ex post efficient for all r and 𝑤.

As we have shown, in the decreasing marginal values setup with identical supports, ex
post efficiency is possible if and only if 𝑤 = 1/2 and r = 1+µ1−µ2

2
, which implies that each

firm’s ownership must be equal to its expected allocation. This contrasts with the open set
of ownerships that allow ex post efficiency with constant marginal values. In either setup,
for θ ≥ τ ek, no restrictions on r are required for ex post efficiency, although there continue to
be restrictions on 𝑤 for ex post efficiency for θ ∈ [τ ek, τ

∗
k), where τ ∗k is distribution dependent.

5 Pareto frontiers

We now look at bargaining more generally, that is, without restricting attention to ex post
efficiency, by studying how the agents’ expected net payoffs depend on the productivity
differential, the ownership structure, and the bargaining weights.

5.1 Constant marginal values

For constant marginal values, given r, 𝑤, and θ, the allocation rules of the optimal mecha-
nisms are as given by Proposition 1.

Increasing θ reduces the allocative distortions arising from the exertion of bargaining
power. As an illustration, assume F P

2 is the uniform distribution and 𝑤 = 1, i.e., agent
1 has all the bargaining power. Then given θ ≥ 0, we have ΨB

2 (θ2) = 2θ2 − (1 + θ) and
ΨS

2 (θ2) = 2θ2 − θ, implying that ΨB
2
−1
(x) = x+θ+1

2
for x ∈ [θ − 1, θ + 1] and ΨS

2
−1
(x) = x+θ

2
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for x ∈ [θ, 2 + θ]. Because the derivative of these functions with respect to θ is less than 1,
the probability that there is trade under the mechanism that is optimal for agent 1 increases
for any given θ1 and any r ∈ [0, 1]. Conversely, and even simpler, the probability that there
is trade for any given θ1 also increases in θ when 𝑤 = 0 because ΨB

1 (θ1) and ΨS
1 (θ1) are

independent of θ and the probability that θ2 exceeds ΨB
1 (θ1) and ΨS

1 (θ1) increases in θ.
As illustrated in Figure 3, which assumes 𝑤 = 1 and r = 0.7, for some type realizations

there is trade from the higher valuing agent to the lower valuing agent. With overlapping
supports, shown in panel (a), for θ1 < 0.3, there can be trade from agent 1 to agent 2 even
though agent 1 has the higher type, and for θ1 > 0.3, there can be trade from agent 2 to
agent 1 even though agent 2 has the higher type. As shown in Figure 3(b), there is also
a possibility of trade in the “wrong direction” with nonoverlapping supports: Even though
agent 2’s type always exceeds that of agent 1, for some type realizations, agent 2 sells its 0.3
units to agent 1.

(a) θ = 0, 𝑤 = 1, and r = 0.7

0 0.3 1
θ1θ=0

1
θ2

Q2=1

(b) θ = 1, 𝑤 = 1, and r = 0.7

0 0.3 1
θ1θ=1

2
θ2

Q2=1

Figure 3: Allocation rule with constant marginal values and 𝑤 = 1. Assumes uniformly distributed types.

Away from extremal bargaining weights, increasing θ has the additional, beneficial effect
of making the budget constraint less tight. For example, for 𝑤 = 1/2, r = 1, and θ = 0,
the the allocation rule of second-best mechanism is Q2 = 1 if and only if θ2 ≥ θ + θ1 + 1/4,
while for θ = 1/4, it is Q2 = 1 if and only if θ2 ≥ θ+ θ1+1/16.31 Thus, the strengthening of
agent’s 2’s distribution increases the range of values for agent 2 such that agent 2 is allocated
the resource for any given type of agent 1. Figure 4 illustrates that these comparative statics
effects of θ on the second-best allocation rule extend to r ∈ (0, 1).

Let Ui(r,𝑤) ≡ Eθi [ui(θi)] denote agent i’s expected net payoff given r and 𝑤. The
expected net payoffs are the natural objects of interest because they allow us to disentangle
the effects of, say, changing r on the performance of the bargaining mechanism from the
direct, automatic effects that changes of r have on the agents’ utilities via the value of their

31In the incomplete information bargaining mechanism in this case, ρ = 1.5, ω1 = 1, and ω2 = 0.25.
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(a) θ = 0, 𝑤 = 1/2, and r = 0.9

0 1
θ1

1

θ=0

θ2

Q2=1

(b) θ = 0.25, 𝑤 = 1/2, and r = 0.9

0 1
θ1θ=0.25

1.25
θ2

Q2=1

Figure 4: Allocation rule with constant marginal values and equal bargaining weights. Assumes uniformly
distributed types.

outside options. Denote by Uir(r,𝑤) and Ui𝑤(r,𝑤) the derivatives of Ui with respect to r

and 𝑤, respectively.

Proposition 4. With constant marginal values, for i, j ∈ N with i ̸= j, we have:

(i) Uir(r, 1/2) = Ujr(r, 1/2);

(ii) Uir(r, 1) = −Ujr(r, 0); and

(iii) Ui𝑤(r,𝑤) = −Uj𝑤(r,𝑤) > 0 for all 𝑤 if r /∈ Rc(θ) and for 𝑤 ̸= 1/2 if (r,𝑤) ∈ Ec(θ).
Moreover, assuming that ΨS

i and ΨB
i are increasing, we have:

(iv) U1r(r, 1), U2r(r, 0) > 0 for r sufficiently close to 0 and F1 = F2;

(v) U1r(r, 1), U2r(r, 0) < 0 for r sufficiently close to 1 and F1 = F2;

(vi) U1r(r, 0), U2r(r, 1) > 0 for r sufficiently close to 1; and

(vii) U1r(r, 0), U2r(r, 1) < 0 for r sufficiently close to 0.

Proof. See Appendix A.

In part (iii) of Proposition 4, the derivatives are 0 if r and 𝑤 permit ex post efficiency
and 𝑤 ̸= 1/2. (At 𝑤 = 1/2, the functions Ui(r,𝑤) are not differentiable in 𝑤.) Parts (iv) and
(v) reflect that an agent with all the bargaining power expects to gain more from bargaining
when ownership is not extremal, provided the distributions are sufficiently symmetric. As
indicated in parts (vi) and (vii), the expected net payoff of the agent with no bargaining
weight moves in the opposite direction.

The results of Proposition 4 can be illustrated by examining the Pareto frontiers for
the agents’ expected net payoffs. The frontier for a given r is defined by the maximum
expected net payoffs that can be achieved for that r and some 𝑤 ∈ [0, 1]. With overlapping
supports, the frontier point for a given (r,𝑤) is uniquely defined by (U1(r,𝑤), U2(r,𝑤)), and
each bargaining weight 𝑤 is associated with a unique point on the frontier for a given r, as
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is illustrated in Figure 5 for the case of uniformly distributed types. As Figure 5 shows, a
larger value of agent 1’s bargaining weight results in a larger expected net payoff for agent
1 and a smaller expected net payoff for agent 2. But, importantly, the figure also shows the
efficiency loss associated with unequal bargaining weights: the farther is 𝑤 from 1/2, the
smaller is

∑
i∈N Ui(r,𝑤).

(a) θ = 0

r ∈ {0, 1}

r ∈ {0.1, 0.9}

r ∈ {0.21, 0.79}

r ∈ {0.3, 0.7}

r = 0.5
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(b) θ = 0.25
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Figure 5: Frontiers for expected net payoffs with constant marginal values. Assumes that agent 1’s types
are uniformly distributed on [0, 1] and that agent 2’s types are uniformly distributed on [θ, 1 + θ], with θ as
indicated above each panel. Negatively sloped diagonals reflect expected net payoffs under ex post efficiency,
Eθ[u

e
1(θ1) + ue

2(θ2)], which depends on r in the case of heterogeneous distributions.

Figure 5(a) displays the case of identical supports. The case of r = 0 and 𝑤 = 1/2, i.e.,
one seller and one buyer with equal bargaining weights, corresponds to the payoffs associated
with the second-best mechanism derived Myerson and Satterthwaite (1983), which is labeled
with “MS” in the figure. Varying 𝑤 from 0 to 1 while keeping r = 0 maps out the frontier for
extremal ownership, which was derived by Williams (1987) and is thus labeled “Williams”.
Reflecting the impossibility of ex post efficiency with extremal ownership, the entire Williams
frontier lies below the ex post efficient frontier, which in Figure 5(a) is given by the line with
slope −1 connecting the points (1/6, 0) and (0, 1/6).

Once r increases to 0.21, ex post efficiency becomes possible with equal bargaining weights
(labeled “CGK” in the figure). This corresponds to the range [0.21, 0.79] of initial ownership
shares for which efficient partnership dissolution is possible in Cramton et al. (1987) when
there are two partners with uniformly distributed types on [0, 1]. As r increases to 0.5 (by
symmetry we need only consider r ∈ [0, 0.5]), the payoff frontier continues to move closer
to the ex post efficient frontier, but still only actually touches the frontier for 𝑤 = 1/2.
Without the incomplete information bargaining mechanism from Proposition 1, only the
Williams frontier and the points with 𝑤 = 1/2 and r ∈ [0.21, 0.79] were known.
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In Figure 5(b), the supports of the agents’ type distributions are only partially overlap-
ping, with θ = 0.25. In that case, the sum of the expected net payoffs (or, equivalently,
the expected gains from trade) under ex post efficiency depends on the ownership structure
because the total expected net payoff varies with r when the means of the agents’ type dis-
tributions differ. This explains the presence of different ex post efficiency dashed lines in
the figure. As the figure shows, ex post efficiency is possible when bargaining weights are
equal for r sufficiently close to 1/2, but ex post efficiency is not possible, even with equal
bargaining weights, for r = 0 and r = 0.05.

A difference arises with nonoverlapping supports because it is then no longer the case
that each bargaining weight 𝑤 is associated with a unique point on the frontier for a given r.
As discussed, when θ > 1 and 𝑤 = 1/2, bargaining is ex post efficient and akin to generalized
Nash bargaining. The weights η and 1− η determine the allocation of the expected budget
surplus under ex post efficiency when IR binds for the agents’ worst-off types. Consequently,
when ex post efficiency is possible for bargaining weights other than 𝑤 = 1/2, then the ex
post efficient portion of the frontier is defined by two points corresponding to the ex post
efficient expected net payoffs for 𝑤 < 1/2 and those for 𝑤 > 1/2, as well as the line segment
in between, which represents the expected net payoffs that can be achieved when 𝑤 = 1/2.

Frontiers for nonoverlapping supports are illustrated in Figure 6 for uniformly distributed
types. As shown in Figure 6(a) (and Figure 1(c)), for θ = 1.5, ex post efficiency is possible
for 𝑤 ∈ [1/3, 2/3], but not for more extreme values of 𝑤, and as shown in Figure 6(b), for
θ = 2, ex post efficiency is achieved for all 𝑤 ∈ [0, 1], in line with Theorem 2.
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Figure 6: Frontiers for expected net payoffs with constant marginal values. Assumes that agent 1’s types
are uniformly distributed on [0, 1] and that agent 2’s types are uniformly distributed on [θ, 1 + θ], with θ as
indicated above each panel. Negatively sloped diagonals reflect expected net payoffs under ex post efficiency,
E[ue

1(θ1) + ue
2(θ2)]. When 𝑤 = 1/2, a range of outcomes are possible, as parameterized by η ∈ [0, 1].
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While our figures assume uniformly distributed types, the result that the expected net
payoff frontiers are concave holds generally, as shown in the following proposition:

Proposition 5. With constant marginal values, for any ownership r, the frontier of expected
net payoffs as 𝑤 varies over [0, 1] is concave to the origin; away from ex post efficiency, the
slope of the frontier is −𝑤/(1− 𝑤); at ex post efficiency, it is −1.

Proof. See Appendix A.

Proposition 5 generalizes Loertscher and Marx (2022, Prop. 4) to a partnership setup.
It follows from Proposition 5 that movement toward the equalization of bargaining weights
along the expected net payoff frontier weakly increases social surplus. And, from Proposition
2, for θ ∈ [0, 1), ex post efficiency is only achieved for full equalization of the bargaining
weights.

Nonlinear effects of the outside option

In Nash bargaining, an agent’s payoff is linear in its outside option—with outside options oi
for agents i = {1, 2} and total surplus to divide of S, agent i’s Nash bargaining payoff, net
of its outside option, is 1

2
(S− o1 − o2). In contrast, with incomplete information bargaining,

this relation is no longer linear even though the expected value of agent i’s outside option,
riEθi [θi], is linear in ri. An agent’s outside option affects the agent’s worst-off type, which
enters both into the IR constraint and into the determination of the second-best allocation
rule. These effects render the relation nonlinear.

As an illustration, Figure 7(a) shows agent 1’s expected net payoff as a function of resource
ownership. As shown in that figure, agents prefer to have higher bargaining power rather
than lower bargaining power, all else equal. We can also trace out the frontier for agents’
expected net payoffs for a given bargaining weight by varying the resource ownership, as
shown in Figure 7(b). That figure highlights that the effects of changes in an agent’s outside
option vary with the bargaining weights.

Tradeoffs between bargaining power and ownership

It may seem intuitive that, to maximize the expected (equally weighted) social surplus of the
final allocation, a benevolent social planner may want to offset an agent’s bargaining power
with less ownership, that is, if an agent has a lot of bargaining power, then the planner may
want to give it little ownership, and vice versa. As we have seen, this intuition is not borne
out with regard to ex post efficient bargaining because for ex post efficiency, either 𝑤 = 1/2

is required or r does not matter. Away from ex post efficiency, however, both r and 𝑤 affect
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(a) Expected net payoff as r varies
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Figure 7: In panel (a), agent 1’s expected net payoff as r varies for given 𝑤, and in panel (b), frontiers for
expected net payoffs as r varies. The negatively sloped diagonal in panel (b) is the ex post efficient frontier.
For 𝑤 = 1/2 and r ∈ [0.21, 0.79], ex post efficiency is achieved. Assumes constant marginal values, θ = 0,
and that agents’ types are uniformly distributed on [0, 1].

the expected social surplus of the final allocation. However, they do so in nonmonotone
ways that do not necessarily align with the aforementioned intuition. For example, in the
uniform-uniform case with identical supports, when r = 1/10, an increase in 𝑤 from 1/2 to
2/3 decreases expected social surplus, but social surplus is more than restored by an increase
in r to 1/2. Thus, in this example an increase in an agent’s bargaining power can be offset
by an increase in this agent’s ownership. But this relationship is not general. For example,
for r = 9/10, the same increase in 𝑤 would require a decrease in agent 1’s ownership to
restore social surplus.

5.2 Decreasing marginal values

Figures 8(a)–(b) illustrate the frontiers for the agents’ expected net payoffs (expected gains
from trade) for the setup with decreasing marginal values. Interestingly, the expression for
expected net payoffs in the decreasing marginal values setup matches that for the constant
marginal values setup, although the quantities and worst-off types differ. To see this, note
that under decreasing marginal values, agent i’s expected payment is

Eθi [mi(θi)] = Eθ[Ψi(θi, ωi)Q1(θ)−Qi(θ)
2/2]− ωiri + r2i /2− ui(ωi).
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Thus, agent i’s expected net payoff is

Eθi [ui(θi)] = Eθ[θiQi(θ)−Qi(θ)
2/2−mi(θi)− θiri + r2i /2]

= Eθ[(θi −Ψi(θi, ωi))Qi(θ) + ri(ωi − θi)] + ui(ωi).

Thus, the quadratic terms drop out and we have an expression that matches that for the case
of constant marginal values, but with allocations and worst-off types that reflect decreasing
marginal values. As the contrast between Figures 5(a) and 8(a) shows, with decreasing
marginal values, having an extremal r increases trades and gains from trade, all else equal.
In contrast, with constant marginal values, gains from trade are higher when r is closer to
1/2, all else equal, because the final allocation is always extremal, so starting with 50-50
ownership maximizes expected trade.

(a) θ = 1

0. 0.05 0.1 0.15 0.2
[u1(θ1)]0.

0.05

0.1

0.15

0.2
[u2(θ2)]

w=0

w=1

w=1/2
r ∈ {0, 1}

r ∈ {0.1, 0.9}

r ∈ {0.2, 0.8}

r ∈ {0.3, 0.7}

r ∈ {0.4, 0.6}

r = 0.5

(b) θ = 1.8

0. 0.1 0.2 0.3 0.4 0.5
[u1(θ1)]0.

0.1

0.2

0.3

0.4

0.5

[u2(θ2)]

w=0

w=1

w=1/2

r = 0.2

r = 0.4

r = 0.6

r = 0.8

r = 1

Figure 8: Frontiers for expected net payoffs with decreasing marginal values. Assumes that agent 1’s types
are uniformly distributed on [1, 2] and that agent 2’s types are uniformly distributed on [θ, 1 + θ], with θ
as indicated. Negatively sloped diagonals reflect expected net payoffs under ex post efficiency, Eθ[u

e
1(θ1) +

ue
2(θ2)]. (For θ = 1, ex post efficiency is achieved with 𝑤 = 1/2 and r = 1/2, and for θ = 1.8, with 𝑤 = 1/2

and r ∈ [0.008, 0.192] ∪ [0.941, 1].)

The similarities and differences between Figure 8(a) and the corresponding figure for
constant marginal values, Figure 5(a), highlight features of incomplete information bar-
gaining. Both figures assume identical supports and identical distributions, in which case
the expected net payoffs under ex post efficiency (dotted lines in the figures) do not vary
with r under constant marginal values, but do so under decreasing marginal values. This
is because with constant marginal values, the agents’ expected outside options sum to
Eθ[θ1r + θ2(1 − r)], which does not vary with r when the agents draw their types from
the same distribution. In contrast, under decreasing marginal values, the expected outside
option is Eθ[θ1r+θ2(1− r)− r2/2− (1− r)2/2], which is strictly concave in r and, with iden-
tical distributions, maximized at r = 1/2. As a result, the achievable expected net payoffs
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in Figure 8(a) vary with r and are lowest for r = 1/2 and highest for extremal r.
A second key feature of the figures is how far each frontier is below its corresponding

dotted ex post efficiency line. In both Figure 5(a) and Figure 8(a), frontiers for more extremal
ownership are farther from ex post efficiency than frontiers for more symmetric ownership.
With constant marginal values, the frontiers achieve ex post efficiency when 𝑤 = 1/2 and
ownership is sufficiently close to 50–50, whereas with decreasing marginal values, the frontiers
only achieve ex post efficiency when ownership is exactly 50–50. This reflects the effects of
the IR constraint, which requires that agents’ worst-off types have nonnegative expected
payoffs net of their outside option. The sum of the outside options for the agents’ worst-off
types is rω1+(1−r)ω2 under constant marginal values and rω1+(1−r)ω2−r2/2−(1−r)2/2

under decreasing marginal values. In both cases, these outside options are maximized with
extremal worst-off types, with the implication that the no-deficit constraint is “harder” to
satisfy when ownership is extremal than when it is more symmetric. The combined result of
these two effects is that in Figure 5(a), the frontier for extremal r is the “innermost” frontier,
whereas in Figure 8(a), the frontier for extremal r is the “outermost” frontier. Both Figure
5(b) and Figure 8(b) have asymmetry between the supports, which introduces an additional
effect that higher r means higher ownership for the weaker agent, which reduces the expected
value of the agents’ outside options, contributing to the shifts in the expected net payoffs
under ex post efficiency in those figures.

6 Extensions

Section 6.1 provides an implementation of the bargaining model with constant marginal
values. In Section 6.2, we extend the model to multilateral bargaining among more than two
agents.

6.1 Implementation

We now reconsider the setup with constant marginal values and assume monotone virtual
costs and virtual values. We show that under these assumptions, the incomplete information
bilateral bargaining mechanism can be implemented by a fee-setting mechanism in which a
designer charges fees to the agents in exchange for operating a form of a Texas shootout: one
agent chooses the price and the other chooses whether to sell at that price or buy at that
price. Given known (or estimated) distributions and ownership, observed fee functions are
informative regarding 𝑤 and ρ.

The literature on implementing incomplete information bargaining outcomes has focused
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special cases such as ex post efficiency, or extremal ownership while imposing parametric
restrictions on the distributions. For example, while allowing for more than two agents,
Cramton et al. (1987) derive an implementation of ex post efficiency using a variant of
a k-double-auction, assuming identical distributions and sufficiently symmetric ownership.
Assuming 𝑤 = 1/2 and r ∈ {0, 1}, Myerson and Satterthwaite (1983) observed that their
second-best mechanism can be implemented using the k-double-auction of Chatterjee and
Samuelson (1983) with k = 1/2 when both agents draw their types from the uniform dis-
tribution with identical supports. Williams (1987) showed that this insight extends insofar
as in the uniform-uniform case with r ∈ {0, 1} every point on the Pareto frontier that cor-
responds to some 𝑤 can be achieved by the k-double-auction for some value of k.32 Given
that these results are reasonably well known, we focus in what follows on the new results.

Fee-setting mechanisms

Our implementation of the bilateral incomplete information bargaining mechanism is an
adaptation of the fee-setting mechanism of Loertscher and Niedermayer (2019). In our
adaption, an intermediary organizes a variant of a Texas shootout between the agents in
exchange for a fee. In line with assumption we made about the designer, the agents’ types
are not known by the intermediary, but the intermediary knows the distributions from which
the agents’ types are independently drawn and the agents’ bargaining weights. The timing
is as follows: First, the intermediary announces (and commits to) fee functions ϕB(p) and
ϕS(p), which map the price p chosen by agent 1 onto a fee, and fixed payments X1 and X2.
Second, agent 1 sets a price p. Third, agent 2 chooses whether to buy agent 1’s r units at
price p or sell its own 1 − r units to agent 2 at price p. Fourth, if agent 2 chooses to buy,
then agent 1, who is a seller, pays the fee rϕS(p) to the intermediary, and if agent 2 chooses
to sell, then agent 1, who is a buyer, pays the fee (1 − r)ϕB(p) to the intermediary. Last,
the intermediary pays fixed amount X1 to agent 1 and X2 to agent 2.

As shown in the Online Appendix, this fee-setting game implements the bilateral incom-
plete information bargaining mechanism for any 𝑤 ∈ [0, 1] and r ∈ [0, 1].

Proposition 6. With constant marginal values and monotone virtual costs and virtual val-
ues, for any 𝑤 ∈ [0, 1], r ∈ [0, 1], and θ ≥ 0, there exists a fee-setting mechanism that
implements the bilateral incomplete information bargaining mechanism.

Proof. See the Online Appendix for a proof by construction.

32Le (2024) shows that for ri = 1 the implementation result obtained by Williams (1987) extends to
distributions Fi(θi) = θsi and Fj(θj) = 1− (1− θj)

b with s, b > 0 and supports [0, 1].
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For intuition, consider the case of 𝑤 = 1/2 and r ∈ Rc(θ), in which case incomplete
information bargaining is ex post efficient. For the fee-setting mechanism, the fee functions
need to be chosen to induce agent 1 to set a price equal to θ1. Agent 1 with type θ1 chooses
the price p to solve maxp ũ1(θ1, p), where ũ1(θ1, p) is agent 1’s interim expected net payoff
given price p, ignoring fixed payments:

ũ1(θ1, p) ≡ r(p− ϕS(p))(1− F2(p)) +
(
θ1 − (1− r)(p+ ϕB(p))

)
F2(p)− rθ1.

The first-order condition for agent 1’s maximization problem is

0 = r(1− ϕS′(p))(1− F2(p))− (1− r)(1 + ϕB′(p))F2(p)

+
[
−r(p− ϕS(p)) + θ1 − (1− r)(p+ ϕB(p))

]
f2(p).

Using fee functions

ϕS(p) ≡
∫ p

0

r − F2(x)

r
dx and ϕB(p) ≡

∫ p

0

r − F2(x)

1− r
dx,

the first-order condition becomes (θ1 − p) f2(p) = 0, which is satisfied, as is the second-order
condition, at p = θ1. Thus, these fees functions induce the ex post efficient allocation.

Agent 1’s interim expected net payoff (ignoring fixed payments) is u1(θ1) ≡ ũ1(θ1, θ1),

which is minimized at θ̂1 = F−1
2 (r). Analogously, agent 2’s interim expected net payoff

(ignoring fixed payments) is

u2(θ2) = Eθ1 [(1− r)θ1 | θ1 > θ2] Pr (θ1 > θ2) + Eθ1 [θ2 − rθ1 | θ1 < θ2] Pr (θ1 < θ2)− (1− r)θ2

=

∫ 1

θ2

(1− r)θ1dF1 (θ1) +

∫ θ2

0

(θ2 − rθ1) dF1(θ1)− (1− r)θ2,

which is minimized at θ̂2 = F−1
1 (1− r), as required for implementation.

To illustrate, consider uniformly distributed types on [0, 1]. Then we have u1(θ̂1) < 0

and u2(θ̂2) > 0, which means that for individual rationality to be satisfied, agent 1 must be
paid a positive fixed fee, while agent 2 can be taxed with a negative fixed fee.

To pin down these fixed fees, note that the intermediary’s expected budget surplus under
binding IR (not including fixed fees) is

ΠI(r) = Eθ1

[
rϕS(θ1)(1− F2(θ1)) + (1− r)ϕB(θ1)F2(θ1)

]
+ u1(θ̂1) + u2(θ̂2)

= Eθ1

[∫ θ1

0

(r − F2(x)) dx

]
+ u1(θ̂1) + u2(θ̂2).
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For the IR and no-deficit to be satisfied, ΠI(r) ≥ 0 is required. This holds for r ∈ Rc(θ).
For example, for uniformly distributed types on [0, 1],, we have ΠI(r) = r(1 − r) − 1

6
. This

is nonnegative for r ∈ (0.21, 0.79). Fixed fees that ensure individual rationality and split the
intermediary’s expected surplus equally between the agents (consistent with 𝑤 = 1/2) are
given by X1 = −u1(θ̂1) +

1
2
ΠI(r) and X2 = −u2(θ̂2) +

1
2
ΠI(r), leaving the intermediary with

a payoff of zero.

6.2 Multilateral bargaining

In this section, we analyze the ownership structures and bargaining weights that permit ex
post efficiency in the model with constant marginal values when there are more than two
agents. As we show, analogs to the results above continue to hold. For example, for ex post
efficiency, the agents drawing their types from distributions with the support [θ, 1 + θ] must
have equal bargaining weights, and, depending on the supports, bargaining weights of other
agents cannot differ by too much. In the interest of space, our focus here is on conditions
that permit ex post efficiency, thereby mirroring the analysis in Section 4, even though the
analysis away from ex post efficiency extends as well.

We let N = NU ∪ ND consist of agents i ∈ NU and agents j ∈ ND. For all i, j ∈ N
we allow for Fi ̸= Fj. For all i ∈ NU , the support of Fi is [0, 1], while for j ∈ ND, Fj has
the support [θ, 1 + θ], with Fj(θ) = F P

j (θ − θ) for θ ∈ [θ, 1 + θ], where F P
j is j’s primitive

distribution with support [0, 1]. Let nU ≡ |NU |, nD ≡ |ND|, and n = nU + nD. As in the
bilateral setting with constant marginal values, we denote by Rc(θ) the set of ownership
structures that permit ex post efficiency.

The result of Proposition 1 extends to the case of n > 2. That is, the incomplete
information bargaining allocation rule assigns the resource to an agent with the maximum
ironed weighted virtual type, maxi∈N Ψi,

𝑤i
ρ
(θi, ωi), with ρ equal to the smallest feasible value

such that the no-deficit constraint is satisfied. In contrast to the case of n = 2, where, as
noted in Proposition 1, ties are a zero probability event, for n > 2, there can be a positive
probability of having more than one agent with the maximum ironed weighted virtual type,
so one must address the possibility of ties. In the event of such a tie, the mechanism
randomizes over the tied agents with randomization probabilities that maintain the agents’
worst-off types.

When nD = 1, we let ∆U denote the set of nU -dimensional vectors x such that (x, 1 −∑nU

i=1 xi) ∈ ∆, i.e., ∆U ≡ {x ∈ [0, 1]nU |
∑nU

i=1 xi ≤ 1}. Further, we let

RU(θ) ≡ {rU ∈ ∆U | (rU , 1−
∑nU

i=1 rU,i) ∈ Rc(θ)}.
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With these definitions in hand, the result of Proposition 2 that the set of ex post efficiency
permitting ownership structures converges as θ approaches 1 from below to the singleton set
in which the agent with support [θ, 1+ θ] owns all the resources generalizes to a setting with
nU ≥ 2 agents with support [0, 1] and one agent with support [θ, 1 + θ] by essentially the
same logic. And for θ ≥ 1, again, any ownership structure permits ex post efficiency.

Proposition 7. With constant marginal values, equal bargaining weights, nU ≥ 2, and
nD = 1, the set RU(θ) satisfies: for θ ∈ [0, 1), RU(θ) is nonempty with RU ⊂ [0, 1)nU\{0}
and limθ↑1RU(θ) = {0}; and for θ ≥ 1, RU(θ) = ∆U .

Further, we can characterize bargaining weights that permit ex post efficiency. With
nD ≥ 2, for ex post efficiency to be possible, all agents in ND must have the same bargaining
weight, and we provide conditions under which the bargaining weights of agents in NU are
constrained to be equal to or close to those of the agents in ND. For the purposes of stating
Proposition 8, we define 𝑤U ≡ maxj∈NU s.t. rj>0 𝑤j, which is the maximum bargaining weight
among the agents in NU that have positive ownership.

Proposition 8. With constant marginal values, ex post efficiency requires that: (i) all agents
in ND have the same bargaining weight 𝑤D; (ii) for θ ∈ [0, 1), any agent i ∈ NU has 𝑤i = 𝑤D;
(iii) for θ ≥ 1, any agent i ∈ NU with ri > 0 has 𝑤i sufficiently close to max{𝑤U ,𝑤D}, and
with monotone virtual cost and virtual value functions,

max{𝑤U ,𝑤D} − 𝑤i

max{𝑤U ,𝑤D}
≤ (θ − 1) fi(1).

Further, for θ ≥ 1 and monotone virtual cost and virtual value functions, if nD = 1, then ex
post efficiency is possible if and only if any agent i ∈ NU with ri > 0 has

1 +
(
1− 𝑤i

max{𝑤i,𝑤D}

) 1

fi(1)
≤ θ −

(
1− 𝑤D

max{𝑤i,𝑤D}

) 1

fD(θ)
,

where we use D as the index for the agent in ND.

Proof. See the Online Appendix.

As Proposition 8 shows, for overlapping supports, ex post efficiency requires that all
agents have the same bargaining weight, consistent with Proposition 2 for the case of only
two agents. For nonoverlapping supports, it is still the case that for ex post efficiency all
agents with support [θ, 1 + θ] must have the same bargaining weight. But, in that case, the
bargaining weights of the agents with support [0, 1] can differ, as long as they do not differ
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too much from each other and from the common bargaining weight of the agents with the
higher support.

For the case of nD = 2 and nU = 1, Figure 9 provides an illustration of the observation
by Makowski and Mezzetti (1993) that for θ ∈ (0, 1) sufficiently large, ex post efficiency is
possible even if the agent in NU owns all the resources: The top vertex in the triangle is
included in the ex post efficiency permitting set for θ = 0.8 in panel (a) and for θ approaching
1 in panel (b).

(a) Agents 1 and 2 in ND; agent 3 in NU

(1,0,0)(0,1,0)

(0,0,1)

θ=0

θ=0.8

(b) Agents 1 and 2 in ND; agent 3 in NU

(1,0,0)(0,1,0)

(0,0,1)

θ=0

θ→1

(0.21, 0.79, 0) (0.79, 0.21, 0)

Figure 9: Ex post efficiency permitting set with constant marginal values and equal bargaining weights.
Assumes that agents 1 and 2 are in ND and agent 3 is in NU and that types are uniformly distributed on
the respective supports.

Figure 9(a) shows that a shift of resources from an agent in NU (agent 3) to an agent in
ND (agent 1 or 2) can cause ex post efficiency to no longer be possible. For example, starting
from the orange boundary in the lower right corner in Figure 9(a), shifting resources to agent
1 would cause ex post efficiency to no longer be possible (moves the ownership structure into
the white corner triangle). Thus, it may be advantageous to have some ownership by a firm
with a weaker distribution to balance the stronger distributions of the agents in ND.

Related to Figure 9(b), note that when θ ≥ 1 and r3 = 0, the problem essentially reduces
to bilateral bargaining between two symmetric agents, that is, agents 1 and 2. Thus, from
Cramton et al. (1987), we know that ex post efficiency is possible if and only if the agents’
ownership is sufficiently symmetric. This is reflected in the figure by the fact that the
intersection of the orange θ → 1 region with the bottom edge of the triangle, where agent 3’s
share is zero, spans (0.21, 0.79, 0) to (0.79, 0.21, 0), but excludes more extreme ownership.
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7 Conclusions

We analyze a unifying model of bargaining using an independent private values setting in
which information is always incomplete. Our framework provides conditions under which
complete and incomplete information bargaining are equivalent. If these conditions are met,
then bargaining is always efficient, that is, neither bargaining power nor ownership affects
whether the outcome is ex post efficient. This is a formalization or conceptualization of
the notion of “little private information.” While ownership structures can affect whether
bargaining is efficient, they are, loosely speaking, less important than bargaining power
insofar as, typically, there are many ownership structures that permit ex post efficiency,
whereas with overlapping supports, ex post efficiency is only possible with equal bargaining
power.

The key insights extend to a model with decreasing marginal values in the form of
quadratic utility. There are, however, subtle but important difference to the widely studied
constant marginal values model as well. As a case in point, with identical supports, there is
only one ownership structure that is consistent with ex post efficiency. In addition, bilateral
bargaining can be ex post efficient with overlapping supports and extremal ownership.
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A Appendix: Proofs

Proof of Lemma 1. Suppose that ⟨Q,M′⟩ satisfies BIC and interim IR. We show that there
exists M such that ⟨Q,M⟩ satisfies DIC and interim IR, and such that both mechanisms
have the same expected budget surplus under binding IR for agents’ worst-off types.

Define qi(θi) ≡ Eθ−i
[Qi(θi,θ−i]. Letting ωi denote agent i’s interim worst-off type, we

have (see Cramton et al., 1987):

ωi =


θi if ri < qi(θi),

ωi s.t. qi(ωi) = ri if ri ∈ [qi(θi), qi(θi)] and ∃ωi s.t. qi(ωi) = ri,

ωi s.t. limθ↑ωi
qi(θ) < ri and limθ↓ωi

qi(θ) > ri if ri ∈ [qi(θi), qi(θi)] and ∄ωi s.t. qi(ωi) = ri,

θi if ri > qi(θi).

Recall that by our characterization of the BIC, the interim expected payment rule under
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BIC is

Eθ−i
[M ′

i(θi,θ−i)] ≡ Eθ−i
[V (θi, Qi(θ))]− V (θi, ri)−

∫ θi

ωi

(qi(x)− ri)dx− ui(ωi).

We show that the mechanism ⟨Q,M⟩, where

Mi(θi,θ−i) ≡ V (θi, Qi(θ))− V (θi, ri)−
∫ θi

ωi

(Qi(x,θ−i)− ri)dx− ui(ωi),

satisfies DIC and interim IR. To do so, define agent 1’s payoff net of its outside option if
types are (θi,θ−i) and firm 1 reports θ′i as

Ui(θi,θ−i; θ
′
i) ≡ V (θi, Qi(θ

′
i,θ−i))− V (θi, ri)−Mi(θ

′
i,θ−i).

First, we show that DIC holds, i.e., that for all θi, θ′i, and θ−i, we have Ui(θi,θ−i; θi) ≥
Ui(θi,θ−i; θ

′
i). To see this, note that

Ui(θi,θ−i; θi)− Ui(θi,θ−i; θ
′
i) = V (θi, Qi(θi,θ−i))− V (θi, ri)−Mi(θi,θ−i)

−V (θi, Qi(θ
′
i,θ−i)) + V (θi, ri) +Mi(θ

′
i,θ−i)

=

∫ θi

θ′i

Qi(x,θ−i)dx− (θi − θ′i)Qi(θ
′
i,θ−i)

≥ 0,

where the inequality uses that Qi(θi,θ−i) is nondecreasing in θi.

Second, we show that interim IR holds, i.e., Eθ−i
[Ui(θi,θ−i; θi)] ≥ 0. To see this, note

that

Eθ−i
[Ui(θi,θ−i; θi)] = Eθ−i

[V (θi, Qi(θi,θ−i))− V (θi, ri)−Mi(θi,θ−i)]

=

∫ θi

ωi

(qi(x)− ri)dx+ ui(ωi)

= ui(ωi) +



∫ θi
θi
(qi(x)− ri)dx if ri < qi(θi)∫ θi

ωi
(qi(x)− qi(ωi))dx if ri ∈ [qi(θi), qi(θi)] and qi(ωi) = ri,∫ θi

ωi
(qi(x)− ri)dx if ri ∈ [qi(θi), qi(θi)] and qi(ωi) ̸= ri,∫ θi

θi
(ri − qi(x))dx if ri > qi(θi)

≥ ui(ωi),

where the inequality uses that qi(θi) is nondecreasing in θi and, for the third row in the
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bracketed expression, that ri < qi(θi) for all θi > ωi and ri > qi(θi) for all θi < ωi.
Thus, ⟨Q,M⟩ satisfies DIC and interim IR. Further, Eθ−i

[Mi(θi,θ−i)] = Eθ−i
[M

′
i (θi,θ−i)],

and so the expected budget surplus under ⟨Q,M′⟩ is the same as under ⟨Q,M⟩. ■

Proof of Lemma 2. The condition for ex post efficiency when 𝑤 = 1, ΨB

2 (θ) ≥ 1, can
be written as Ψ

B,P

2 (0) + θ ≥ 1, which, noting that τ ec = 1, is satisfied for θ ≥ τ ∗c(1). The
condition for ex post efficiency when 𝑤 = 0, θ ≥ Ψ

S

1 (1), is satisfied for θ ≥ τ ∗c(0). Turning
to the case of 𝑤 ∈ (0, 1), a necessary and sufficient condition for bargaining to be ex post
efficient, is

Ψ
S

1, 𝑤
max{𝑤,1−𝑤}

(1) ≤ Ψ
B

2, 1−𝑤
max{𝑤,1−𝑤}

(θ). (A.1)

For 𝑤 ≤ 1/2, this amounts to Ψ
S

1, 𝑤
1−𝑤

(1) ≤ θ, which holds for θ ≥ τ ∗c(0) because Ψ
S

1, 𝑤
1−𝑤

(θ) ≤

Ψ
S

1 (θ). For 𝑤 > 1/2, (A.1) is equivalent to 1 ≤ Ψ
B

2, 1−𝑤
𝑤
(θ), which holds for θ ≥ τ ∗c(1) because

Ψ
B

2, 1−𝑤
𝑤
(θ) ≥ Ψ

B

2 (θ). Thus, θ ≥ τ ∗c is necessary and sufficient for bargaining to be ex post
efficient for all 𝑤 ∈ [0, 1]. ■

Proof of Lemma 3. First note that Ψ
S

1,α(1) is decreasing and Ψ
B

2,α(θ) is increasing in α.
To see this, note that Ψ

S

1,α(1) = α + (1 − α)Ψ
S

1 (1), which is decreasing in α if and only if
Ψ

S

1 (1) > 1, which holds because (i) ΨS
1 (1) > 1 and (ii) if ΨS

i (θ1) is ironed at θ1 = 1, then
there exists a ∈ (0, 1) such that Ψ

S

1 (1) =
∫ 1
a ΨS

1 (x)dF1(x)

1−F1(a)
= 1−aF1(a)

1−F1(a)
> 1. Analogously, one

can show that ΨB
2,α(θ) is increasing in α using that if ΨB

2 is ironed at θ, then there exists

a ∈ (θ, 1 + θ) such that Ψ
B

2 (θ) =
∫ a
θ ΨB

2 (x)dF2(x)

F2(a)
= θ−a(1−F2(a))

F2(a)
< θ. It follows that 𝑤(θ)

and 𝑤(θ) exist, are unique, and decreasing respectively increasing, and that for θ ≥ 1 and
r > 0, inequality (A.1) holds if and only if 𝑤 ∈ [𝑤(θ),𝑤(θ)]. From the definitions, we have
𝑤(1) = 𝑤(1) = 1/2. ■

Proof of Theorem 2. For constant marginal values, given θ ≥ 0 and r ∈ [0, 1], let Πc(r)

denote the expected budget surplus under ex post efficiency and binding IR for agents’
worst-off types. It then follows that ex post efficiency is possible with 𝑤 = 1/2 if and only
if Πc(r) ≥ 0, where using (4), Πc can be written as

Πc(r) = Eθ1 [Ψ1(θ1, ω
e
1(r))q

e
1(θ1)] + Eθ2 [Ψ2(θ2, ω

e
2(r))q

e
2(θ2)]− rωe

1(r)− (1− r)ωe
2(r),

where ωe
i (r) is agent i’s worst-off type under ex post efficiency. The following lemma will be

useful:

Lemma A.1. Given θ ∈ [0, 1), Πc(r) is concave in r.
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Proof. Let ωe
i (r) denote a worst-off type of agent i under the ex post efficient allocation rule

and ownership (r1, r2) = (r, 1−r). To show that Πc is concave, we show that for all λ ∈ (0, 1)

and r, r̂ ∈ [0, 1] (dropping the subscript on Πc to ease notation):

Π(λr + (1− λ)r̂) ≥ λΠ(r) + (1− λ)Π(r̂). (A.2)

Note that Π can be written as Π(r) = Π1(r) + Π2(r), where

Πi(r) ≡
∫ ωe

i (r)

θi

ΨS
i (θ)q

e
i (θ)dFi(θ) +

∫ θi

ωe
i (r)

ΨB
i (θ)q

e
i (θ)dFi(θ)− riω

e
i (r).

Using the definition of Πi(r) and (ΨS
i (θ)−ΨB

i (θ))fi(θ) = 1, we have

Πi(λr + (1− λ)r̂) = λΠi(r) + (1− λ)Πi(r̂) (A.3)

+λ

∫ ωe
i (λr+(1−λ)r̂)

ωe
i (r)

qei (θ)dθ − (1− λ)

∫ ωe
i (r̂)

ωe
i (λr+(1−λ)r̂)

qei (θ)dθ

+λriω
e
i (r) + (1− λ)r̂iω

e
i (r̂)− (λri + (1− λ)r̂i)ω

e
i (λr + (1− λ)r̂).

Let λ ∈ (0, 1) and r, r̂ ∈ [0, 1] with 0 ≤ r < r̂ ≤ 1 be given. The possible worst-
off types are for agent 1: (1) ωe

1(r) < ωe
1(r̂) with r = qe1(ω

e
1(r)) < qe1(ω

e
1(r̂)) = r̂; (2)

ωe
1(r) < ωe

1(r̂) = 1 with r = qe1(ω
e
1(r)) < qe1(ω

e
1(r̂)) < r̂; and (3) ωe

1(r) = ωe
1(r̂) = 1 with

qe1(1) < r < r̂. In cases 1 and 2,
∫ ωe

1(λr+(1−λ)r̂)

ωe
1(r)

qe1(θ)dθ > r (ωe
1(λr + (1− λ)r̂)− ωe

1(r)) and∫ ωe
1(r̂)

ωe
1(λr+(1−λ)r̂)

qe1(θ)dθ ≤ r̂ (ωe
1(r̂)− ωe

1(λr + (1− λ)r̂)) , which, using (A.3), imply that

Π1(λr + (1− λ)r̂) > λΠ1(r) + (1− λ)Π1(r̂),

and in case 3, this holds with equality.
For agent 2, we have: (1) ωe

2(r) > ωe
2(r̂) with 1− r̂ = qe2(ω

e
2(r̂)) < qe2(ω

e
2(r)) = 1− r; (2)

θ = ωe
2(r̂) < ωe

2(r) with 1− r̂ < qe2(θ) < qe2(ω
e
2(r)) = 1− r; or (3) θ = ωe

2(r̂) = ωe
2(r) with 1−

r̂ < 1−r < qe2(θ). In cases 1 and 2,
∫ ωe

2(r)

ωe
2(λr+(1−λ)r̂)

qe2(θ)dθ ≤ (1−r) (ωe
2(r)− ωe

2(λr + (1− λ)r̂))

and
∫ ωe

2(λr+(1−λ)r̂)

ωe
2(r̂)

qe2(θ)dθ > (1 − r̂) (ωe
2(λr + (1− λ)r̂)− ωe

2(r̂)), which, using (A.3), imply
that

Π2(λr + (1− λ)r̂) > λΠ2(r) + (1− λ)Π2(r̂),

and in case 3, this holds with equality.
Thus, Πi(λr+(1−λ)r̂) ≥ λΠi(r)+(1−λ)Πi(r̂) for each agent, implying that (A.2) holds

and completing the proof. □

The set of ex post efficiency permitting ownership structures Rc(θ) satisfies Rc(θ) = {r ∈
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[0, 1] | Πc(r) ≥ 0}. Extending existing results (Liu et al., 2026) to the case of agents with
differing supports, we have the following, a version of which also holds for the multilateral
bargaining setup:33

Lemma A.2. Given θ ∈ [0, 1), there exists ownership r∗(θ) ∈ [0, 1] that equalizes agents’
worst-off types; moreover, r∗(θ) maximizes Πc(r) and Πc(r

∗(θ)) > 0.

Proof. See Online Appendix B.2, which proves the more general version for the multilateral
bargaining setup.

Lemma A.2 implies that r∗(θ) ∈ Rc(θ), which guarantees that Rc(θ), and hence Ec(θ),
are nonempty for θ ∈ [0, 1). They are also nonempty for θ ≥ 1 because in that case ex post
efficiency is possible for any r ∈ [0, 1] and 𝑤 = 1/2 (e.g., with a posted price mechanism
with price p ∈ [1, θ]). This completes the proof that for any θ ≥ 0, Ec(θ) is nonempty.

We next prove that r∗(θ) is decreasing for θ ∈ [0, 1).

Lemma A.3. Ownership r∗(θ) defined in Lemma A.2 is decreasing in θ for θ ∈ [0, 1).

Proof. Assume that θ ∈ [0, 1). From Lemma A.2, r∗ equalizes agents’ worst-off types,
implying that there exists ω∗ such that qe1(ω

∗) = r∗ and qe2(ω
∗) = 1 − r∗. Explicitly noting

the reliance of qe1 on θ, ω∗ is defined by qe1(ω
∗, θ) = 1−qe2(ω

∗), where qe1(θ1, θ) =
∫ 1

0
Q1(θ1, x+

θ)dF P
2 (x) and qe2(θ2) =

∫ 1

0
Q2(θ1, θ2)dF1(θ1). Because an agent’s worst-off type must be in

its type support, ω∗ ∈ [θ, 1], which implies that qe1(ω∗, θ) = F P
2 (ω∗− θ) and qe2(ω

∗) = F1(ω
∗).

Using these expressions and qe1(ω
∗, θ)+ qe2(ω

∗) = 1 and totally differentiating with respect to
θ, we have

∂ω∗

∂θ
=

fP
2 (ω

∗ − θ)

fP
2 (ω

∗ − θ) + f1(ω∗)
> 0.

Because qe2(ω
∗) = 1− r∗ and qe2(θ) is increasing for θ ∈ [θ, 1], it follows that ∂r∗

∂θ
< 0. □

Combining Lemmas A.1, A.2, and A.3, it follows that for θ ∈ [0, 1), there exist r(θ) and
r(θ) such that 0 ≤ r(θ) < r∗(θ) < r(θ) ≤ 1 and such that for all r ∈ [r(θ), r(θ)], Πc(r) ≥ 0.
For θ ∈ [0, 1), Myerson and Satterthwaite (1983) show that ex post efficiency is impossible
with extremal ownership, implying that neither 0 nor 1 are elements of Rc(θ), so we have
0 < r(θ) < r∗(θ) < r(θ) < 1, completing the proof of (i).

Turning to result (ii), because an agent’s worst-off type must be in its type support, in
the limit as θ goes to 1 from below, equalized worst-off types approach 1. Using a result
first established by Cramton et al. (1987), agent 2’s worst-off type θ̂2 must satisfy either (a)
qe2(θ̂2) = 1 − r or (b) θ̂2 = θ and q2(θ) > 1 − r. Thus, noting that qe2(1) = F1(1) = 1, a

33One needs to replace r∗(θ) ∈ [0, 1] by r∗(θ) ∈ [0, 1]n−1 with
∑n−1

i=1 r∗i ≤ 1 and adjust the definition of
Πc to apply for n ≥ 2 agents.
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worst-off type of 1 requires that r = 0. Further, when r approaches zero and θ approaches
1, the expected net payoff, and hence maximized budget surplus, approaches zero, with the
implication that the set of ownerships inducing positive revenue under ex post efficiency
approaches the singleton set {0}, completing the proof of (ii).

Turning to the results on bargaining weights, recall that τ ∗c ≡ max{ΨS
1 (1), 1−ΨB,P

2 (0)}.
Range (1): For θ ∈ [0, 1], ex post efficiency is possible for 𝑤 = 1/2 and r ∈ Rc(θ), as just
seen, so we are left to show that for 𝑤 ̸= 1/2, it is not possible. To do this, it suffices to
recall the allocation rule of the incomplete information bargaining mechanism in Proposition
1. This rule is not ex post efficient if 𝑤 ̸= 1/2 because then the ironed weighted virtual type
functions of the two agents differ (see also Lemma B.5). Range (2): For θ ∈ (1, τ ∗c), ex post
efficiency is possible for 𝑤 = 1/2 for any r. In addition, with θ > 1, small enough departures
from equal bargaining weights only affect the ironed weighted virtual type functions in such
a way that agent 2’s ironed weighted virtual type is still larger than agent 1’s for all possible
θ2 and θ1. The larger is θ, the larger can these departures from equality be, which proves
that Wc(θ) increases in the set inclusion sense. In addition, the monotonicity of the virtual
type functions in 𝑤i imply that Wc(θ) is convex, giving us that 𝑤(θ) is decreasing and 𝑤(θ)

is increasing, which completes the proof of (iii). In addition, 0 ≤ 𝑤(θ) < 𝑤(θ) ≤ 1 for θ > 1.
For θ < τ ∗c , either ΨS

1 (1) > θ, implying that trade will not be ex post efficient for 𝑤 = 0

or sufficiently close to 0, or θ < 1−ΨB
1 (0), implying that trade will not be ex post efficient

for 𝑤 = 1 or sufficiently close to 1 (or both). Thus, for θ ∈ [1, τ ∗c), 0 ≤ 𝑤(θ) < 𝑤(θ) ≤ 1,

with at least one weak inequality strict, which proves the first part of (iv). For additional
characterization of 𝑤 and 𝑤, see Proposition 8. Range (3): For θ ≥ τ ∗c , agent 2 is always
a buyer and agent 1 always a seller of r units. Because the weighted virtual type functions
are monotone in 𝑤 and ex post efficiency obtains for any 𝑤 ∈ [0, 1], we have 𝑤(θ) = 0 and
𝑤(θ) = 1, completing the proof of (iv). By continuity, we have the limit result (v).

Combining these results, we obtain the characterization of Ec(θ), completing the proof of
Theorem 2. ■

Proof of Theorem 3. For decreasing marginal values, given θ ≥ 1 and r ∈ [0, 1], let Πd(r)

denote the expected budget surplus under ex post efficiency and binding IR for agents’
worst-off types. It then follows that ex post efficiency is possible with 𝑤 = 1/2 if and only
if Πd(r) ≥ 0, where Πd can be written as

Πd(r) =
2∑

i=1

Eθ

[
Ψi(θi, ω

e
i (r))Q

e
i (θ)−

Qe
i (θ)

2

2

]
− ωe

1(r)r + r2/2− ωe
2(r)(1− r) + (1− r)2/2).
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where ωe
i (r) is a worst-off type for agent i under ex post efficiency.

We proceed with a series of lemmas. The first establishes the “shape” of Πd.

Lemma A.4. (i) If θ = 1, then Πd(r) is quasiconcave in r with a unique interior maximum
at r =

1+µP
1 −µP

2

2
. (ii) If θ ∈ (1, 2), then Πd(r) is increasing at r = 1, has a unique interior

maximum at r∗ = 1+ω∗
1−ω∗

2

2
, where qe1(ω

∗
1) = r∗ = 1− qe2(ω

∗
2) and where r∗ is decreasing in θ,

has a unique interior minimum at r = 3−θ
2

∈ (r∗, 1), and is increasing at r = 1.

Proof. First, we confirm that there exist interior worst-off types ω∗
1 ∈ (1, 2) and ω∗

2 ∈ (θ, 1+θ)

such that qe1(ω
∗
1) =

1+ω∗
1−ω∗

2

2
= 1 − qe2(ω

∗
2). Because qe1(θ1) =

∫ 2

1
max{0, 1+θ1−(x+θ−1)

2
}dF P

2 (x)

and qe2(θ2) =
∫ 2

1
min{1, 1−θ1+θ2

2
}dF1(θ1), we have

1 + ω∗
1 − ω∗

2

2
= qe1(ω

∗
1) =

∫ min{1,1+ω∗
1−θ}

0

1 + ω∗
1 − x− θ

2
dF P

2 (x)

and
1− ω∗

1 + ω∗
2

2
= qe2(ω

∗
2) =

∫ 2

max{1,ω∗
2−1}

1− x+ ω∗
2

2
dF1(x) + F1(ω

∗
2 − 1),

where, of course, F1(ω
∗
2 − 1) = 0 if ω∗

2 ≤ 2 and f1(x) = 0 for x < 1. Solving these two
equations, we have

(ω∗
1, ω∗

2) =



(µ1, µP
2 + θ) if θ ≤ min{µ1, 2− µP

2 },(
2−

∫ 2

µP
2 +θ−1

F1(x)dx, µP
2 + θ

)
if 2− µP

2 < θ ≤ µ1,(
µ1, 1 + µ1 −

∫ 1+µ1−θ

0
F P
2 (x)dx

)
if µ1 < θ ≤ 2− µP

2 ,(
2−

∫ 2

ω∗
2−1

F1(x)dx, 1 + ω∗
1 −

∫ 1+ω∗
1−θ

0
F P
2 (x)dx

)
if max{µ1, 2− µP

2 } < θ,

where the final row offers only a system of equations and not an explicit solution. Neverthe-
less, it is straightforward to confirm that in all cases, ω∗

1 ∈ (1, 2) and ω∗
2 ∈ (θ, 1 + θ). Given

this and r∗ = qe1(ω
∗
1), it follows that r∗ ∈ (0, 1) and that r∗ < 3−θ

2
. Further, we have

∂ω∗
1

∂θ
=

 0 if θ ≤ 2− µP
2 ,

∂ω∗
2

∂θ
F1(ω

∗
2 − 1) if θ > 2− µP

2 ,

and
∂ω∗

2

∂θ
=

 1 if θ ≤ µ1,
∂ω∗

1

∂θ

(
1− F P

2 (1 + ω∗
1 − θ)

)
+ F P

2 (1 + ω∗
1 − θ) if θ > µ1.

Thus, ∂r∗

∂θ
= 1

2
(
∂ω∗

1

∂θ
− ∂ω∗

2

∂θ
) < 0.

We now establish that r∗ is the unique interior local maximum of Πd. We can write Πd
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as

Πd(r) = Eθ

[
θ1Q

e
1(θ)−

Qe
1(θ)

2

2
−
∫ θ1

ω1

Qe
1(y, θ2)dy

]
−
(
ω1r −

r2

2

)
(A.4)

+Eθ

[
θ2Q

e
2(θ)−

Qe
2(θ)

2

2
−
∫ θ2

ω2

Qe
2(θ1, y)dy

]
−
(
ω2(1− r)− (1− r)2

2

)
,

where the worst-off types are treated parametrically. Differentiating with respect to r, we
get

∂Πd(r)

∂r
= (qe1(ω1)− r)

dω1

dr
− ω1 + r + (qe2(ω2)− 1 + r)

dω2

dr
+ ω2 − (1− r).

With extremal worst-off types, we have dω1

dr
= dω2

dr
= 0, and with interior worst-off types, we

have qe1(ω1) = r and qe2(ω2) = 1− r, which gives us, regardless of whether worst-off types are
interior or not, ∂Πd(r)

∂r
= ω2 − ω1 + 2r − 1. Thus, at any interior local optimum, we have

r =
1 + ω1 − ω2

2
. (A.5)

With interior worst-off types, ∂2Πd(r)
∂r2

= −∂ω1

∂r
+ ∂ω2

∂r
+ 2, where ∂ω1

∂r
is positive and ∂ω2

∂r
is

negative and either ∂ω1

∂r
= 2 or ∂ω2

∂r
= −2, ensuring that Πd is concave. Thus, there is a local

maximum at r∗ =
1+ω∗

1−ω∗
2

2
, where the “star” notation now makes explicit that ω∗

1, ω
∗
2, and

r∗ are determined simultaneously.
With extremal worst-off types, ∂2Πd(r)

∂r2
= 2, implying that Πd is convex, and so there

can be no local maximum in this case, but there can be a local minimum. We consider the
four possibilities in turn: 1. A local minimum when (ω1, ω2) = (1, θ) requires r = 2−θ

2
and

1− r ≤ qe2(θ) =
1+θ−µ1

2
, which requires µ1 ≤ 1, a contradiction; 2. For (ω1, ω2) = (1, 1 + θ),

there is a local minimum at r = 0 if θ = 1, and otherwise no local minimum. 3. A local
minimum when (ω1, ω2) = (2, 1 + θ) requires r = 2−θ

2
≥ qe1(2) =

3−µP
2 −θ

2
, which requires

µP
2 ≥ 1, a contradiction. 4. There is a local minimum with (ω1, ω2) = (2, θ) at r = 3−θ

2

(because µ1 ≤ 2 and µP
2 ≥ 0 imply that 3−θ

2
≥ qe1(2) and θ−1

2
≤ qe2(θ)).

This leaves us to consider cases in which one worst-off type is extremal and one is interior.
Working through these cases, one can show that we can never have ∂Πd(r)

∂r
= 0. Specifically,

one can confirm that when one worst-off type is interior and the other is extremal, one cannot
have (A.5).
Case 1 : r < qe1(1) and 1 − r ∈ (qe2(θ), q

e
2(1 + θ)). Then ω1 = 1 and ω2 is defined by

1 − r = qe2(ω2). If ω2 < 2, then ω2 = 1 − 2r + µ1 and so (A.5) implies µ1 = 1, which is a
contradiction. If ω2 > 2, then (A.5) implies r < 0, which is a contradiction.

Case 2 : r ∈ (qe1(1), q
e
1(2)) and 1 − r > qe2(1 + θ). Then ω2 = 1 + θ and ω1 is defined by
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r = qe1(ω1). If ω1 > θ, then ω1 = 2r − 1 + µP
2 + θ and (A.5) implies µP

2 = 1, which is a
contradiction. If ω1 < θ, then (A.5) implies r < 0, which is a contradiction.

Case 3 : r > qe1(2) and 1 − r ∈ (qe2(θ), q
e
2(1 + θ)). Then ω1 = 2 and ω2 is defined by

1 − r = qe2(ω2). If ω2 < 2, then ω2 = 1 − 2r + µ1 and (A.5) implies µ1 = 2. If ω2 > 2, then
1− r = ω2−1

2
+
∫ 2

ω2−1
1
2
F1(x)dx, which implies that ω2 − 3 + 2r = −

∫ 2

ω2−1
F1(x)dx < 0, while

(A.5) implies ω2 − 3 + 2r = 0, a contradiction.

Case 4 : r ∈ (qe1(1), q
e
1(2)) and 1 − r < qe2(θ). Then ω2 = θ and ω1 is defined by r = qe1(ω1).

If ω1 > θ, then ω1 = 2r − 1 + µP
2 + θ and (A.5) implies µP

2 = 0, a contradiction. If
ωe
1 < θ, then r = 1

2

∫ 2+ω1−θ

1
F P
2 (x)dx, while (A.5) implies that 2r = 1 + ω1 − θ, so we have

1+ ω1 − θ =
∫ 2+ω1−θ

1
F P
2 (x)dx < (1 + ω1 − θ)F P

2 (2 + ω1 − θ) < 1+ ω1 − θ, a contradiction.

It remains to consider the possibility of a local maximum at the boundary. First consider
r = 0. In this case, ω1 = 1 and ω2 = 1 + θ and so we have ∂Πd(r)

∂r

∣∣∣
r=0

= θ − 1 ≥ 0, which
contradicts a local maximum at r = 0 when θ > 1. Turning to r = 1, in this case, ω1 = 2

and ω2 = θ and so we have ∂Πd(r)
∂r

∣∣∣
r=1

= θ − 1 ≥ 0, implying that there is a local maximum
at r = 1 for θ > 1.

It follows that when θ = 1, Πd is quasiconcave with a unique maximum at r∗ = 1+ω∗
1−ω∗

2

2
=

1+µ1−µP
2

2
, and that when θ ∈ (1, 3), Πd is increasing at r = 0, has a unique interior local

maximum at r∗ = 1+ω∗
1−ω∗

2

2
, has a unique interior local minimum at r = 3−θ

2
, and is increasing

at r = 1. □

Lemma A.4 establishes that for θ ∈ (1, 2), Ed(θ) has the form described in the statement
of the theorem, but it remains to establish parts (i) and (ii) of the theorem.

Together with Lemma A.4, the next lemma implies that for 𝑤 = 1/2 and θ = 1, ex post
efficiency is possible if and only if r = 1+µP

1 −µP
2

2
= 1+µ1−µ2

2
.

Lemma A.5. If θ = 1, then Πd(
1+µP

1 −µP
2

2
) = 0.

Proof. For θ = 1, we have Qe
i (θ) =

1+θi−θj
2

, and so it is straightforward to show using (A.4)
that

Πd(r) =
1

2
µ1µ2 +

1

2
(ω1(1− µ2) + ω2 (1− µ1)) +

1

4

(
ω2
1 + ω2

2

)
−(ω1r + ω2(1− r)− r2/2− (1− r)2/2)− 1

4
.

It then follows that Πd(r) is strictly concave at its maximizer r = 1+µ1−µ2

2
and that Πd(

1+µ1−µ2

2
) =

0. The result follows noting that for θ = 1, we have 1+µ1−µ2

2
=

1+µP
1 −µP

2

2
. □

Together with Lemma A.4, the next lemma implies that for 𝑤 = 1/2 and θ ∈ (1,min{µ1, 2−
µP
2 }], ex post efficiency is possible for all r ∈ [r, r] with 0 ≤ r < r∗ < r ≤ 1. The lemma
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shows that Πd(r
∗) > 0, and then by the continuity of Πd(r), it follows that Πd(r) > 0 for r

in an open interval around r∗.

Lemma A.6. For all θ ∈ (1,min{µ1, 2− µP
2 }], Πd(r

∗) > 0.

Proof of Lemma A.6. From Lemma A.5, if θ = 1, then Πd(r
∗) = 0. We show that Π(r∗) is

increasing in θ for θ ∈ (1,min{µ1, 3− µP
2 }]. For θ ∈ [1, 2], we have

∂Πd(r
∗)

∂θ
=

1

2
(F2 (min{1 + ω∗

1, 1 + θ}) (2− ω∗
1)− (2− µ1))

+
1

2

(∫ θ

1

F1(θ1)(1− F2(1 + θ1))dθ1 +

∫ 1+θ

min{1+ω∗
1,1+θ}

(3− θ2)dF2(θ2)

)
.

As shown in Lemma A.4, if θ ∈ [1,min{µ1, 2− µP
2 }], then ω∗

1 = µ1, and so in this case,

∂Πd(r
∗)

∂θ
=

1

2

∫ θ

1

F1(θ1)(1− F2(1 + θ1))dθ1 ≥ 0,

with a strict inequality if θ > 1, establishing that Πd(r
∗) is increasing in θ for θ ∈ (1,min{µ1, 2−

µP
2 }], and so Πd(r

∗) > 0 for θ ∈ (1,min{µ1, 2− µP
2 }]. □

The next lemma shows that for any θ ∈ [1, 3), 0 /∈ Rd(θ), with the implication that for
𝑤 = 1/2 and θ ∈ (1,min{µ1, 2 − µP

2 }], ex post efficiency is possible for all r ∈ [r, r] with
0 < r < r∗ < r ≤ 1.

Lemma A.7. For all θ ∈ [1, 3), Πd(0) < 0.

Proof. Define welfare W (θ) ≡
∑2

i=1

(
θiQ

e
i (θ)−

Qe
i (θ)

2

2

)
and let Wi denote the partial deriva-

tive of W with respect to its i-th argument. By the envelope theorem, Wi(θ) = Qe
i (θ).

In the VCG mechanism, expected surplus under binding IR for agents’ worst-off types is
Eθ [W (ω1, θ2) +W (θ1, ω2)−W (θ1, θ2)]−O(r), where O(r) ≡ ω1r+ ω2(1− r)− r2/2− (1−
r)2/2. Thus, we have

Πd(r) = Eθ [W (ω1, θ2) +W (θ1, ω2)−W (θ1, θ2)]−O(r)

=

∫ 1+θ

θ

∫ 2

1

(W (ω1, θ2) +W (θ1, ω2)−W (θ1, θ2)) dF1(θ1)dF2(θ2)−O(r)

= W (ω1, 1 + θ) +W (2, ω2)−W (2, 1 + θ)−
∫ 2

1

(Qe
1(θ1, ω2)−Qe

1(θ1, 1 + θ))F1(θ1)dθ1

−
∫ 1+θ

θ

(Q2(ω1, θ2)− qe2(θ2))F2(θ2)dθ2 −O(r),
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where the final equality follows by repeated integration by parts. For r = 0, we have
(ω1, ω2) = (1, 1 + θ) and so O(0) = θ + 1/2 = W (1, 1 + θ), implying that for θ ∈ [1, 3),

Πd(0) = −
∫ 1+θ

θ
[Q2(1, θ2)− qe2(θ2)]F2(θ2)dθ2 < 0, where the inequality uses that Q2(1, θ2) ≥

q2(θ2), with a strict inequality for θ in an open set of θ ∈ [1, 3). □

Now we turn to rtop(θ). Recall from the above lemmas that for θ = 1, Πd(r) is quasi-
concave with unique interior maximizer r∗ with Πd(r

∗) = 0. Thus, for θ = 1, Πd(1) < 0.
In the lemma below, we show that there exists τ ∈ (1, 2) such that for θ = τ , Πd(1) = 0.
Further, because for θ ∈ (1, 3), Πd(1) is increasing in θ, we have Πd(1) > 0 for all θ ∈ (τ , 3).
From this, it follows that for θ ∈ [τ , 3), there exists rtop(θ) such that Πd(r

top(θ)) = 0, with
rtop(τ) = 1 and for θ ∈ (τ , 3), rtop(θ) ∈ (0, 1), where the result that rtop(θ) > 0 follows from
Lemma A.7. Indeed, because Πd(r) has a local minimum at r = 3−θ

2
, if Πd(

3−θ
2
) ≤ 0, then

rtop(θ) ≥ 3−θ
2

, and if Πd(
3−θ
2
) > 0, then we can let rtop(θ) = r∗.

Lemma A.8. There exists τ ∈ (1, 2) such that for all θ ∈ [τ , 3), Πd(1) ≥ 0.

Proof. Because Qe
1(θ1, θ2) ≥ 0, we have

∫ 2

θ1
Qe

1(y, θ2)dy ≥ 0, and because Qe
2(θ1, θ2) ∈ [0, 1]

and ω2 ∈ [θ, 1+θ], we have
∫ θ2
ω2

Qe
2(θ1, y)dy ≤

∫ θ2
θ

Qe
2(θ1, y)dy ≤ θ2−θ. Also, these inequalities

hold strictly for all types in an open subset of [1, 2]× [θ, 1+θ] as long as θ < 3. Consequently,

Eθ

[∑
i∈N

(
θiQ

e
i (θ)−

Qe
i (θ)

2

2

)
+

∫ 2

θ1

Qe
1(y, θ2)dy −

∫ θ2

ω2

Qe
2(θ1, y)dy

]
≥ Eθ

[∑
i∈N

(
θiQ

e
i (θ)−

Qe
i (θ)

2

2

)
− (θ2 − θ)

]
,

with a strict inequality for θ < 3. Moreover, Eθ

[∑
i∈N

(
θiQ

e
i (θ)−

Qe
i (θ)

2

2

)]
≥ Eθ

[
θ2 − 1

2

]
,

which is simply saying that expected social surplus must be at least as large as the social
surplus obtained when always allocating everything to agent 2. Using the result that for
r ≥ 3−θ

2
, we have r ≥ qe1(2), and so ω1 = 2, it follows that for θ ∈ (1, 3):

Πd(1) = Eθ

[∑
i∈N

(
θiQ

e
i (θ)−

Qe
i (θ)

2

2

)
+

∫ 2

θ1

Qe
1(y, θ2)dy −

∫ θ2

ω2

Qe
2(θ1, y)dy

]
− 3

2

> Eθ

[
θ2 −

1

2
− (θ2 − θ)

]
− 3

2
= θ − 2 ≥ 0.

Further, differentiating Πd(1) with respect to θ, we obtain ∂Πd(1)
∂θ

= Eθ1 [Q
e
2(θ1, θ)] > 0.

Because Πd(1) = 0 when θ = 1 and Πd(1) > 0 when θ = 2, and because Πd(1) is increasing
in θ, it follows by continuity that there exists a unique τ < 2 such that for all θ ∈ [τ , 3),
Πd(1) ≥ 0 holds, completing the proof. □

The result that for θ ∈ [1, 3) ex post efficiency requires 𝑤 = 1/2 follows because, as long
as θ < 3, there exist θ1 and θ2 such that 1+θ1−θ2

2
∈ (0, 1), and ex post efficiency requires that
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for all such θ1 and θ2, 1 + θ1 − θ2 = 1 + Ψ1,𝑤
ρ
(θ1, θ̂1)−Ψ2, 1−𝑤

ρ
(θ2, θ̂2). In particular, ex post

efficiency and the incomplete information bargaining mechanism require that the ranking of
the actual types and the weighted virtual types be the same. In an adaptation of Lemma
B.5 for the decreasing marginal value case, given an open set of types for agent 1 and agent 2
such that the ranking of 1+ θ1 and θ2 varies on that set, the ranking of 1+Ψ1,𝑤

ρ
(θ1, ω1) and

Ψ2, 1−𝑤
ρ
(θ2, ω2) cannot always match that of 1 + θ1 and θ2 if the agents’ bargaining weights

differ, establishing the result. The proof of the remaining results on bargaining weights are
analogous to those for constant marginal values and so are omitted. This completes the
proof of Theorem 3. ■

Proof of Proposition 4. The proof for parts (i) and (ii) follows from the envelope theorem
applied to the Lagrangian associated with the designer’s problem. Part (iii) reflects the
property shown in Proposition 5 that the expected net payoff frontier has slope −𝑤/(1−𝑤)

if r /∈ Rc(θ) and the convex hull of the frontier has slope −1 if r ∈ Rc(θ), where for r ∈ Rc(θ)

and 𝑤 = 1/2, the expected net payoff depends on the parameter η.
It remains to prove parts (iv)–(vii) of the proposition. For these parts, we assume that

ΨS
i and ΨB

i are increasing, and so invertible. We begin by focusing on the case with 𝑤 = 1

and proving that U1r(r, 1) > 0 for r sufficiently close to 0, and that U1r(r, 1) < 0 for r

sufficiently close to 1, when F1 = F2. For 𝑤 = 1, the interim expected allocations are:

q1(θ1) =

 F2(Ψ
S−1

2 (θ1)) if 0 ≤ θ1 ≤ F−1
1 (1− r),

F2(Ψ
B−1

2 (θ1)) if F−1
1 (1− r) < θ1 ≤ 1,

and

q2(θ2) =


F1(Ψ

S
2 (θ2)) if 0 ≤ θ2 < ΨS−1

2 (F−1
1 (1− r)),

1− r if ΨS−1

2 (F−1
1 (1− r)) ≤ θ2 ≤ ΨB−1

2 (F−1
1 (1− r)),

F1(Ψ
B
2 (θ2)) if ΨB−1

2 (F−1
1 (1− r)) < θ2 ≤ 1.

Using the characterization of worst-off types from Cramton et al. (1987), this gives us a
worst-off type for agent 1 of

ω1 =


ΨB

2 (F
−1
2 (r)) if F2(Ψ

B−1

2 (F−1
1 (1− r))) ≤ r,

F−1
1 (1− r) if F2(Ψ

S−1

2 (F−1
1 (1− r))) < r < F2(Ψ

B−1

2 (F−1
1 (1− r))),

ΨS
2 (F

−1
2 (r)) if r ≤ F2(Ψ

S−1

2 (F−1
1 (1− r))),

and for agent 2, any type in
[
ΨS−1

2 (F−1
1 (1 − r)),ΨB−1

2 (F−1
1 (1 − r))

]
is worst-off, including
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ω2 = F−1
1 (1− r). We have ui(θ) = θ(qi(θ)− ri)−mi(θ) and, in the incomplete information

bargaining mechanism,

mi(θ) = θ(qi(θ)− ri)−
∫ θi

ωi

(qi(y)− ri)dy − ηiπ(Q,ω),

where π(Q,ω) =
∑

i∈N E[Ψi(θi, ωi)qi(θi)]−
∑

i∈N ωiri.

For the case of n = 2, we have (η1, η2) = (1, 0) if 𝑤 > 1/2, (η1, η2) = (0, 1) if 𝑤 < 1/2,
and (η1, η2) = (η, 1− η) for some η ∈ [0, 1] if 𝑤 = 1/2. Thus, for 𝑤 = 1, we have η1 = 1 and
so

u1(θ1) =

∫ θ1

ω1

(q1(y)− r)dy +
2∑

i=1

Eθi [Ψi(θi, ωi)qi(θi)]− ω1r − ω2(1− r).

Thus, agent 1’s expected net payoff when 𝑤 = 1 is

U1(r, 1) =

∫ 1

0

∫ θ1

ω1

(q1(y)− r)dydF1(θ1) +
2∑

i=1

∫ 1

0

Ψi(θi, ωi)qi(θi)dFi(θi)− ω1r − ω2(1− r).

We can write the double integral in the expression for U1(r, 1) as∫ 1

ω1

∫ θ1

ω1

(q1(y)− r)dydF1(θ1)−
∫ ω1

0

∫ ω1

θ1

(q1(y)− r)dydF1(θ1)

=

∫ 1

ω1

(1− F1(y))(q1(y)− r)dy −
∫ ω1

0

F1(y)(q1(y)− r)dy.

Taking the case of r sufficiently close to 1 such that ω1 = ΨB
2 (F

−1
2 (r)) > F−1

1 (1− r), we can
rewrite this as

∫ 1

ω1

(1− F1(y))(F2(Ψ
B−1

2 (y))− r)dy −
∫ F−1

1 (1−r)

0

F1(y)(F2(Ψ
S−1

2 (y))− r)dy −
∫ ω1

F−1
1 (1−r)

F1(y)(F2(Ψ
B−1

2 (y))− r)dy,

whose derivative with respect to r, evaluated at r = 1, is 1 − E[θ1]. (Generally, for r

sufficiently close to 1, we have ω1 − E[θ1] − ω′
1(1 − F1(ω1))(F2(Ψ

B−1

2 (ω1)) − r) + F−1′
1 (1 −

r)(1− r)
[
F2(Ψ

S−1

2 (F−1
1 (1− r)))− F2(Ψ

B−1

2 (F−1
1 (1− r)))

]
.) Turning to the summation term

in the expression for U1(r, 1), for agent 1, and for r sufficiently close to 1 such that ω1 =

ΨB
2 (F

−1
2 (r)) > F−1

1 (1− r), this is

∫ ωi

0
ΨS

i (θi)qi(θi)dFi(θi) +
∫ 1

ωi
ΨB

i (θi)qi(θi)dFi(θi)

=
∫ F−1

1 (1−r)

0
ΨS

1 (θ1)F2(Ψ
S−1

2 (θ1)dF1(θ1) +
∫ ω1

F−1
1 (1−r)

ΨS
1 (θ1)F2(Ψ

B−1

2 (θ1))dF1(θ1)

+
∫ 1

ω1
ΨB

1 (θ1)F2(Ψ
B−1

2 (θ1))dF1(θ1),
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whose derivative with respect to r, evaluated at r = 1, is 2/f2(1). (Generally, for r suf-
ficiently close to 1, we have ΨS

1 (F
−1
1 (1 − r))

[
F2(Ψ

B−1

2 (F−1
1 (1 − r))) − F2(Ψ

S−1

2 (F−1
1 (1 −

r))
]
+ ΨB′

2 (F−1
2 (r))F−1′

2 (r)r.) For agent 2, noting that we are working with r such that
ΨB−1

2 (F−1
1 (1− r)) ≤ F−1

2 (r), the summation term for agent 2 is

∫ ΨS−1

2 (F−1
1 (1−r))

0

ΨS
2 (θ2)(F1(Ψ

S
2 (θ2))− (1− r))dF2(θ2) +

∫ 1

ΨB−1
2 (F−1

1 (1−r))

ΨB
2 (θ2)(F1(Ψ

B
2 (θ2))− (1− r))dF2(θ2) + (1− r)ω2.

Differentiating with respect to r and evaluating at r = 1, we get
∫ 1

ΨB−1
2 (0)

ΨB
2 (θ2)dF2(θ2). (For

r sufficiently close to 1, we get
∫ ΨS−1

2 (F−1
1 (1−r))

0
ΨS

2 (θ2)dF2(θ2)+
∫ 1

ΨB−1
2 (F−1

1 (1−r))
ΨB

2 (θ2)dF2(θ2)−
ω2+(1−r)ω′

2.) Finally, note that for r sufficiently close to 1, the derivative of −ω1r−ω2(1−r),

evaluated at r = 1, is equal to −1 − 2
f2(1)

. Thus, gathering the terms calculated above, for
r sufficiently close to 1, the derivative of U1(r, 1) taken with respect to r and evaluated at
r = 1, is

U1r(1, 1) = 1− E[θ1] + 2/f2(1) +
∫ 1

ΨB−1
2 (0)

ΨB
2 (θ2)dF2(θ2)− 1− 2/f2(1)

= −
∫ 1

0
θ1dF1(θ1) +

∫ 1

ΨB−1
2 (0)

θ2dF2(θ2)−
∫ 1

ΨB−1
2 (0)

(1− F2(θ2)) dθ2.

If F1 = F2 = F, then we have

U1r(1, 1) = −
∫ ΨB−1

(0)

0
θ1dF (θ1)−

∫ 1

ΨB−1 (0)
(1− F (θ2)) dθ2 < 0.

By analogous calculations, U1r(0, 1) > 0 if F1 = F2. By continuity, U1r(r, 1) < 0 for r

sufficiently close to 1 and U1r(r, 1) > 0 for r sufficiently close to 0, assuming that F1 = F2.

For 𝑤 = 0, we can reverse the roles of agents 1 and 2 in the analysis above and replace r

with 1− r, giving us the result that U2r(r, 0) < 0 for all r sufficiently large and U2r(r, 0) > 0

for all r sufficiently small, assuming that F1 = F2.

Now turn to effects for the agent without the bargaining power, starting with 𝑤 =

1. For agent 2, we have η2 = 0 and so u2(θ2) =
∫ θ2
ω2
(q2(y) − (1 − r))dy and U2(r, 1) =∫ 1

0

∫ θ2
ω2
(q2(y) − (1 − r))dydF2(θ2). This is analogous to the double integral term analyzed

above. Replacing 1 with 2 and r with 1 − r in the expression above, we have U2(r, 1) =∫ 1

ω2
(1− F2(y))(q2(y)− (1− r))dy −

∫ ω2

0
F2(y)(q2(y)− (1− r))dy. Thus, using the definition

of q2, we have

U2(r, 1) =

∫ 1

ΨB−1
2 (F−1

1 (1−r))

(1− F2(y))(F1(Ψ
B
2 (y))− (1− r))dy −

∫ ΨS−1

2 (F−1
1 (1−r))

0

F2(y)(F1(Ψ
S
2 (y))− (1− r))dy.
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Differentiating with respect to r, we get

U2r(r, 1) =
∫ 1

ΨB−1
2 (F−1

1 (1−r))
(1− F2(y))dy −

∫ ΨS−1

2 (F−1
1 (1−r))

0
F2(y)dy

=

 −
∫ ΨS−1

2 (1)

0
F2(y)dy < 0 if r = 0,∫ 1

ΨB−1
2 (0)

(1− F2(y))dy > 0 if r = 1.

By continuity, U2r(r, 1) > 0 for all r sufficiently close to 1 and U2r(r, 1) < 0 for all r

sufficiently close to 0. Analogously, U1r(r, 0) > 0 for r sufficiently close to 1 and U1r(r, 0) < 0

for r sufficiently close to 0. ■

Proof of Proposition 5. Concavity follows from the slope of the frontier, which we now
prove. Let ⟨Q𝑤,M𝑤⟩ be the incomplete information mechanism for a given 𝑤. Letting
u𝑤
i (θi) denote agent i’s interim expected net payoff given 𝑤, away from ex post efficiency, the

expected net payoff frontier is given by (Eθ1 [u
𝑤
1 (θ1)],Eθ2 [u

𝑤
2 (θ2)])𝑤∈[0,1], where dEθ1

[u𝑤
1 (θ1)]

d𝑤
> 0,

and so the frontier has slope dEθ2
[u𝑤

2 (θ2)]

d𝑤
/
dEθ1

[u𝑤
1 (θ1)]

d𝑤
. By the envelope theorem, the derivative

with respect to 𝑤 of the optimized objective for the incomplete information bargaining
problem satisfies

d

d𝑤

(
Eθ[𝑤(Q

𝑤
1 (θ)θ1 −M𝑤

1 (θ)) + (1− 𝑤)(Q𝑤
2 (θ)θ2 −M𝑤

2 (θ))]
)

= Eθ[Q
𝑤
1 (θ)θ1 −M𝑤

1 (θ)− (Q𝑤
2 (θ)θ2 −M𝑤

2 (θ))].

(A.6)

Using u𝑤
i (θi) = (q𝑤i (θi)− ri)θi −m𝑤

i (θi), we can write 𝑤Eθ1 [u
𝑤
1 (θ1)] + (1− 𝑤)Eθ2 [u

𝑤
2 (θ2)] =

Eθ[𝑤(Q
𝑤
1 (θ)θ1 −M1(θ)) + (1 − 𝑤)(Q𝑤

2 (θ)θ2 −M2(θ))] − Eθ[𝑤rθ1 + (1 − 𝑤)(1 − r)θ2]. Dif-
ferentiating this equation with respect to 𝑤 and using (A.6), we get

Eθ1 [u
𝑤
1 (θ1)]− Eθ2 [u

𝑤
2 (θ2)] + 𝑤

dEθ1 [u
𝑤
1 (θ1)]

d𝑤
+ (1− 𝑤)

dEθ2 [u
𝑤
2 (θ2)]

d𝑤
= Eθ[Q

𝑤
1 (θ)θ1 −M1(θ)− (Q𝑤

2 (θ)θ2 −M2(θ))]− Eθ[rθ1 − (1− r)θ2]

= Eθ1 [u
𝑤
1 (θ1)]− Eθ2 [u

𝑤
2 (θ2)],

which gives dEθ2
[u𝑤

2 (θ2)]

d𝑤
/
dEθ1

[u𝑤
1 (θ1)]

d𝑤
= − 𝑤

1−𝑤
. In contrast, when ex post efficiency is achieved,

Eθ1 [u
𝑤
1 (θ1)] + Eθ2 [u

𝑤
2 (θ2)] is constant, which implies that the slope of the frontier at ex post

efficiency is −1. ■
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