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Abstract
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1 Introduction

Real-world sellers regularly auction horizontally differentiated goods. A common practice is

to run an independent auction for each type of good, with “independent” meaning that the

rules of one auction do not reference outcomes in another. One example is online advertising:

Sellers auction ad slots tied to individual impressions, with each impression triggering a

separate auction.1 In principle, sellers may be able to increase their revenue by linking these

auctions. This raises the questions of when independent auctions are optimal and what the

optimal selling mechanism is when they are not.

In this paper, we address these questions in a Hotelling setting where a single seller

auctions multiple units of two goods located at opposite ends of the unit interval to risk-

neutral buyers with single-unit demand. Buyers share a common gross valuation, incur linear

transportation costs, and have private information about their locations, which are drawn

independently from a common distribution. This framework offers a tractable yet non-trivial

extension of the classic auction model of Myerson (1981), capturing horizontal differentiation

in its most parsimonious form: It introduces two types of goods—the minimum required for

horizontal differentiation to arise—while preserving a one-dimensional type space, as each

buyer’s willingness to pay for the two goods is perfectly negatively correlated. Unlike vertical

differentiation in the tradition of Mussa and Rosen (1978), horizontal differentiation has

received scant attention in the auction and mechanism design literature to date.2

We show that the revenue-maximizing selling mechanism can always be implemented

using a two-stage clock auction with a participation fee. In the first stage, the seller an-

nounces starting prices for each good. Buyers then submit coarse bids indicating which

type of good—if any—they are willing to purchase at these starting prices. We refer to

buyers who are unwilling to make a purchase at these prices as the “flexible” bidders. In

the second stage, the seller runs an independent ascending-price auction that begins at the

announced starting price for any good whose first-stage demand weakly exceeds its supply.

These ascending-price auctions serve the dual purpose of balancing supply and demand when

there is excess demand and determining the dominant strategy prices paid by all buyers.3

1On many online advertising platforms, advertisers manage cross-impression preferences indirectly
through bid adjustments, budget constraints, and broad match settings (see, for example, Google, 2021b,a).
These tools help advertisers control their exposure across multiple independent auctions, but their reliance
on such adjustments suggests that sellers may be leaving money on the table by not directly linking auctions.

2Yet, many real-world auctions involve horizontally differentiated goods. In spectrum auctions, bidders
value licenses based on geography and bandwidth. In cloud computing, users may have differentiated prefer-
ences over server locations due to latency concerns and data regulations. In auctions for airport landing and
takeoff slots, airlines may favor certain time slots depending on their existing schedules and hub operations.
In each case, bidders differ in which good they prefer, even if prices are identical. Our model adopts a
reduced-form approach to capture such settings.

3The ascending-price auctions may need to elicit the willingness to pay of the marginal winners, so they
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For any good with excess supply, no ascending-price auction is run: All buyers who submit-

ted a first-stage bid for that good receive a unit, and the leftover units are allocated among

any remaining bidders—potentially via a non-trivial lottery involving the flexible bidders. If

buyers cannot dispose of any goods they receive—referred to as no disposal—the auction is

constructed so that, in expectation, all flexible bidders receive each type of good with equal

probability. With free disposal, a non-trivial lottery may still be used to assign leftover units

among the flexible bidders, but no bidder receives a good that delivers negative utility.

This two-stage clock auction preserves much of the simplicity of independent auctions by

ensuring that only buyers with a sufficiently strong preference for a particular good partic-

ipate in the corresponding ascending-price auction. Since the optimal way to link auctions

is through lotteries, we refer to this class of mechanisms as lottery-augmented auctions. In-

tuitively, lottery augmentation benefits the seller by maintaining high prices for each good

while still covering the full market and serving every type of buyer with positive probability.4

Without disposal, independent auctions cease to be optimal once the gross valuation

is high enough that some buyer types have a positive willingness to pay for both goods—

that is, as soon as the model exhibits any nontrivial horizontal differentiation. This no-

disposal assumption is descriptive of settings such as online advertisement auctions, where

the auctioneer directly places the winning ads, making disposal impossible. In contrast,

if buyers can freely dispose of goods, independent auctions with optimally chosen reserve

prices remain optimal over a wider range of gross valuations.5 Nonetheless, independent

auctions with optimal reserves cease to be optimal before the gross valuation is high enough

for them to fully cover the market. At the threshold where lottery-augmented auctions

become optimal, both social surplus and consumer surplus increase discontinuously due to

the associated, discontinuous increase in market coverage.

Implementing the optimal mechanism in dominant strategies requires a participation fee

whenever independent auctions are not optimal and there is non-trivial competition among

the buyers. Under these conditions, the setup gives rise to a divergence in revenue between

dominant strategy mechanisms with binding interim versus ex post individual rationality

are only privacy-preserving for inframarginal winners. This can be achieved while maintaining dominant
strategies by not revealing whether bidders have already secured a unit; see Ausubel (2004).

4The idea of selling lotteries over horizontally differentiated goods also appears in the marketing literature
under the name “opaque pricing.” There, leading examples include travel websites such as Hotwire and
Priceline, which offer randomized bundles of hotel rooms, flights, or rental cars (see, for example, Fay and
Xie, 2008). These mechanisms have been studied for their ability to segment markets and extract surplus—
economic forces closely related to those at play in our setting.

5Unlike in standard mechanism design problems, free disposal can bind even when ex post individual
rationality holds. In particular, ex post individual rationality may be satisfied for a buyer offered a lottery
over both goods that, in expectation, yields positive net utility. However, that buyer will discard the realized
good if it delivers a negative payoff and free disposal is allowed.
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constraints. In particular, under the optimal allocation rule, the set of ex post worst-off

types varies with the other buyers’ reports in such a way that no single buyer type is always

ex post worst off. As a result, the interim worst-off types receive an information rent under

ex post individual rationality with positive probability. Consequently, expected revenue

subject to ex post individual rationality is smaller than the expected revenue under interim

individual rationality.

More fundamentally, the mechanism design problem in the Hotelling setting exhibits

countervailing incentives. In standard auction and mechanism design problems, the lowest-

valuation buyer is always (interim and ex post) worst off under any incentive compatible

mechanism. In contrast, in the Hotelling setting no single buyer type is (interim or ex post)

worst off under every incentive-compatible mechanism.6 Consequently, the set of interim

worst-off types depends non-trivially on the allocation rule, and the optimal allocation rule

in turn depends on the set of interim worst-off types. This interdependence complicates

the mechanism design problem and raises the question of whether the standard modular

separability of the allocation and transfer rules still applies.

We resolve this problem by showing that optimal mechanisms satisfy a saddle-point

property. Specifically, given a particular interim worst-off type, the optimal allocation rule

maximizes a virtual objective function that does not depend directly on the transfer rule.

Conversely, given the optimal allocation rule, that interim worst-off type minimizes this ob-

jective function. The saddle-point structure restores modular separability of the allocation

and transfer rules, allowing us to first solve for the optimal allocation rule and then use the

payoff equivalence theorem to back out the corresponding transfer rule.

As is standard, we use the envelope formula to express the designer’s objective function

as an integral over virtual type functions that capture the information rent for each type of

buyer relative to an arbitrarily chosen reference type. It is generally convenient to choose this

reference type to be a worst-off type where the interim individual rationality constraint binds.

However, as mentioned, in the Hotelling setting there is no single type that is interim worst

off under every incentive compatible mechanism. Consequently, we compute the designer’s

objective function using an arbitrary candidate for a worst-off type, which we refer to as the

critical type. Maximizing the designer’s objective function then raises an additional difficulty:

The virtual type functions fail to be monotone at the critical type. Consequently, pointwise

maximization yields an allocation rule that violates the monotonicity constraint implied by

incentive compatibility. To handle this, we develop an ironing procedure parameterized

6Countervailing incentives often arise in models with type-dependent outside options. However, as is
clear from Lewis and Sappington (1989)—who coined the term—the phenomenon is not restricted to such
settings.
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by the critical type. This procedure modifies the virtual type functions over an interval

around the critical type so that the objective function can be pointwise maximized without

violating incentive compatibility. The saddle-point condition then simultaneously pins down

the correct choice of critical type—which we refer to as the critical worst-off type—and the

optimal allocation rule that maximizes the seller’s corresponding ironed objective function.

The interval identified by the ironing procedure precisely corresponds to the set of flexible

buyers who participate in an ex post lottery with positive probability under the two-stage

clock auction. Without disposal, all types in this interval receive each good with equal

probability under the optimal interim allocation rule, and for this reason, we refer to the

ironing interval as the lottery interval in this case. With free disposal, there is still a lottery

interval consisting of buyers who, in expectation, receive each good with equal probability.

However, this interval may be a proper subset of the ironing interval.

Leveraging the saddle-point characterization of the optimal selling mechanism and our

ironing procedure allows us to derive a number of intuitive comparative statics concerning

the location of the ironing interval and the associated starting prices in the two-stage clock

auction. While the critical worst-off type that parametrizes the optimal mechanism is pinned

by a somewhat intricate combinatorial condition—that depends on the number of buyers, the

supply of each good, and the distribution of buyer locations—the saddle-point structure and

ironing procedure bypass much of this complexity and yield sharp, economically interpretable

results. For instance, we provide precise conditions under which increasing the supply of one

good lowers its starting price in the clock auction, while raising the starting price of the

other good.

The present paper connects clock auctions to revenue-maximizing mechanism design in

the presence of horizontal differentiation—a combination that, to the best of our knowledge,

has not been studied before. Perhaps ironically, this paper is Hotelling (1929) meets Hotelling

(1931).7

In the auctions literature, it has long been recognized that clock (or ascending-price)

auctions offer a variety of advantages over static (direct) allocation mechanisms, including

the preservation of winner privacy; see, for example, Ausubel (2004), Milgrom (2009, 2017),

Klemperer (2010), Milgrom (2017), Milgrom and Segal (2020), and Loertscher and Marx

(2020). The implementation of the optimal selling mechanism via two-stage clock auctions

in our paper shares with these designs the preservation of privacy for inframarginal winners.

Like Milgrom (2009) and Klemperer (2010), we also develop a simplified bidding language

7Hotelling’s 1929 model of spatial competition introduces horizontal differentiation, while his 1931 paper
on resource depletion features a now-classic example of ironing a non-monotone marginal revenue function.
Our mechanism design setting brings these two papers together through an ironing procedure applied to a
problem involving horizontally differentiated goods.
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that permits coarse bidding over horizontally differentiated goods in the first stage. However,

unlike these papers, which aim to maximize social surplus, the auctioneer in our setting

maximizes revenue. Coarse bidding and lottery augmentation then endogenously emerge as

the solution to the auctioneer’s revenue-maximization problem.8

Revenue maximization by a multi-product seller in the Hotelling (1929) model has been

studied by Jiang (2007), Fay and Xie (2008), and Balestrieri et al. (2021). All of these

papers assume a single buyer, a uniform type distribution, and a large gross valuation that

guarantees full market coverage. Balestrieri et al. show that the optimal mechanism involves

lotteries regardless of whether transportation costs are linear, convex, or concave. Our pa-

per studies the complementary setting with multiple buyers in which non-trivial aggregate

uncertainty and competition among buyers play a central role. Our framework allows for

arbitrary type distributions, accommodates any gross valuation, and permits binding feasi-

bility constraints and endogenous market coverage. Among other things, this necessitates a

distinction between free disposal and no disposal.

As mentioned, in contrast to problems of vertical differentiation—which, beginning with

Mussa and Rosen (1978), have a long tradition in the mechanism design literature—horizontal

differentiation has received relatively little attention in this literature. A major complication

that arises in the Hotelling setup is the phenomenon of countervailing incentives, which is

absent from models of vertical differentiation.9

Earlier work on problems with countervailing incentives includes Lewis and Sappington

(1989) and Jullien (2000), who study single-agent problems, and Lu and Robert (2001)

and Loertscher and Wasser (2019), who derive optimal mechanisms in partnership models

and exchange settings with ex ante unidentified traders.10 Aside from Lewis and Sappington

(1989), countervailing incentives in these papers arise due to type-dependent outside options.

As a result, there is a relatively straightforward characterization of the worst-off types:

they are the types whose expected allocation equals their endowment.11 In contrast, in

the Hotelling setting, countervailing incentives arise due to the multi-dimensional nature

of the allocation rule. There is no exogenous structure—such as an endowment—that pins

8Lottery-augmented auctions also remain optimal when the seller maximizes any convex combination of
revenue and social surplus that places a strictly positive weight on revenue (see Appendix OD).

9In this regard, the paper also highlights a fundamental difference between models of vertical differentia-
tion à la Mussa and Rosen (1978) and horizontal differentiation. With vertical differentiation, the worst-off
type is pinned down by incentive compatibility alone, whereas with horizontal differentiation it varies with
the allocation rule. This contrasts with oligopoly models, for which Cremer and Thisse (1991) established a
strong equivalence result.

10Much of the partnership literature, initiated by Cramton et al. (1987), has focused on ex post efficiency,
where countervailing incentives are less of an issue because the allocation rule is fixed.

11In the case of Lewis and Sappington (1989), the worst-off type always receives the first-best allocation,
which is exogenously determined by the firm’s cost function.
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down worst-off types or their interim allocations. Earlier Hotelling-style models bypass this

complication by focusing on symmetric single-agent settings with full market coverage, where

one half is always a worst-off type under the optimal mechanism. Countervailing incentives

are also the reason why—irrespective of the type distribution—pointwise maximization by

the designer may not be consistent with incentive compatibility in the Hotelling setting.12

The remainder of this paper is organized as follows. Section 2 introduces the model,

mechanisms and constraints. Section 3 characterizes when independent auctions are optimal

and when they are not, illustrates the consequences of using the optimal selling mechanism for

consumer and social surplus, and describes how the optimal mechanism can be implemented

in dominant strategies using a two-stage clock auction. In Section 4, we derive the optimal

mechanism, establish its comparative statics, and present the auxiliary results required for

these purposes. The paper concludes with a brief discussion in Section 5. Proofs of the main

results are provided in the main appendix, and proofs of all other results can be found in

the online appendix. The online appendix also shows that lotteries remain optimal if the

designer maximizes a convex combination of revenue and social surplus, and if transportation

costs are not linear.

2 Setup

We study a variation of the Hotelling model in which a profit-maximizing seller, or designer,

sells K` ∈ {1, . . . , N} identical goods at two locations, ` ∈ {0, 1}. We use the shorthand

notation −` to refer to the other location (i.e., 1− `). The seller faces N buyers (or agents),

indexed by the set N := {1, . . . , N}. Each buyer demands at most one unit and has an

outside option of value 0. Since buyers demand at most one unit, the assumption that

K` ≤ N is without loss of generality. The seller’s opportunity cost of selling any good is

commonly known to be 0. When K0 = K1 = N , we say that the seller faces N single-agent

problems. In contrast, when K` < N for some ` ∈ {0, 1}, there is non-trivial competition

between buyers.

Each buyer n ∈ N independently draws a location xn ∈ [0, 1] from a commonly known,

absolutely continuous distribution F that admits a density f with full support on [0, 1].

12The ironing procedure we develop to handle this problem is reminiscent of those in Hotelling (1931),
Mussa and Rosen (1978), Myerson (1981), Bulow and Roberts (1989), Condorelli (2012), and Loertscher
and Muir (2022). In these papers, ironing is required when non-monotonicities in virtual values (or marginal
revenue functions) mean that pointwise maximization by the designer is not consistent with incentive com-
patibility, and may give rise to optimal rationing and randomization. Similarly, in the problems analyzed by
Dworczak et al. (2021) and Akbarpour et al. (2022), ironing and the optimality of rationing hinges on the
strength of the designer’s preference for redistribution and on properties of the type distribution. In contrast,
in the Hotelling setting, ironing and randomization may be required regardless of the type distribution.
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Buyers are privately informed about their realized locations and have a commonly known

gross valuation of v > 0 for each good. Buyers incur linear transportation costs, meaning

that a buyer at location x has a willingness to pay of v − x for good 0 and v − (1 − x) for

good 1.

We assume that all buyers are risk neutral and have quasi-linear utility. If v < 1, then

there is a need to distinguish whether free disposal is possible. That is, whether buyers can

discard an allocated good at no cost after participating in the mechanism. Without disposal,

the expected payoff of a buyer at location x who receives a unit of good 0 with probability

q0 and a unit of good 1 with probability q1, where q0 + q1 ≤ 1, while making a payment t, is

(v − x)q0 + (v − (1− x))q1 − t.

With free disposal, the expected payoff becomes

max{v − x, 0}q0 + max{v − (1− x), 0}q1 − t.

If v ≥ 1, then free disposal has no impact on buyer payoffs or the mechanism design problem.

For brevity, we refer to the case where v < 1 and free disposal is possible as the free disposal

case, and to all other cases as the no disposal case.

For ease of exposition and conceptual clarity, we assume throughout the paper that the

virtual type functions

ψB(x) := x− 1− F (x)

f(x)
and ψS(x) := x+

F (x)

f(x)
(1)

are strictly increasing in x.13 For all x ∈ (0, 1), these functions satisfy the following inequality

ψB(x) < x < ψS(x). (2)

We adopt the convention that, for H ∈ {B, S}, ψ−1H (y) = 1 if y > ψH(1), and ψ−1H (y) = 0

if y < ψH(0). The function ψB—associated with buyers in the setting of Myerson (1981)—

arises when the designer computes virtual surplus by integrating from the agent’s report

to the lowest type. The function ψS—which appears in standard procurement auctions

and bilateral trade settings à la Myerson and Satterthwaite (1983)—arises when integration

proceeds from the agent’s report to the highest type. Assuming that the virtual types

13In standard mechanism design settings, such as optimal sale or procurement auctions, monotonicity of
these virtual functions implies that pointwise maximization by the designer is consistent with the mono-
tonicity constraint implied by incentive compatibility. Following Myerson (1981), this consistency property
has become known as regularity.
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function are monotone simplifies the exposition and provides conceptual clarity by ensuring

that any randomization arising under the optimal mechanism is a direct consequence of

countervailing incentives and occurs for all type distributions F , without relying on specific

curvature properties of this distribution.14 Similarly, assuming all buyers draw their locations

from the same distribution ensures that any inefficiencies under the optimal mechanism are

not due to the designer discriminating across bidders.

Application: Online advertising auctions As an application, consider online adver-

tising auctions, where the goods sold by the auctioneer are user impressions and the buyers

are advertisers. These auctions are typically run by large advertising exchanges, such as

those operated by Google and Microsoft, which match advertisers to users in real time. For

example, a search engine may run an auction whenever a user from a particular demographic

or usage category searches for the keywords “Hotel” or “Flight,” allocating K0 and K1 ad

slots that appear on the search results page for users who search for “Flights” and “Hotels,”

respectively, over some time horizon. Empirically, the number of ad slots per query is typ-

ically small (between one and three). While advertisers generally aim to reach many users,

the assumption of single-unit demand is appropriate when they are interested in acquiring

at most one of these K0 + K1 keyword-specific slots, either because of budget constraints

or campaign targeting. Advertisers’ preferences over keywords vary: Hotel chains strongly

prefer the “Hotel” keyword and have weaker interest in “Flight,” airlines exhibit the oppo-

site preferences, and intermediaries such as travel agencies or platforms like Expedia may

exhibit more even and intermediate preferences for both keywords. Horizontally differenti-

ated preferences of this form are well captured by the Hotelling model: Advertisers located

near 0 are more likely to be hotel chains, those closer to 1 are more likely to be airlines, and

those near the middle of the interval are more likely to be travel intermediaries.15 Currently,

many online advertising platforms (including Google’s) run an independent auction for each

impression. The analysis in this paper illustrates how online advertising platforms could

potentially increase their profits by instead batching impressions and optimally designing

joint auctions involving horizontally differentiated impressions.

14As discussed in footnote 37, dispensing with this monotonicity assumption is technically straightforward
and requires a minor adjustment to the ironing procedure developed in this paper.

15The simplest version of the model arises when an equal number of users search for each keyword and
when all slots generate the same gross valuation for advertisers. Under these conditions, the payment
method—whether per slot, per user impression, or per click-through—does not affect the analysis. If the
number of users differs, or if the value per impression depends on the keyword but the value per click-through
remains keyword-independent, then the model corresponds to a setting in which advertisers are charged per
click-through. If advertisers’ values per click-through also vary, this corresponds to a model where the gross
valuations, denoted v`, depend on the keyword’s location ` ∈ {0, 1} with v0 6= v1. Although analyzing this
case seems straightforward, this extension is beyond the scope of the present paper.
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Mechanisms and constraints We now formally define direct mechanisms and their asso-

ciated feasibility, incentive compatibility, and individual rationality constraints. By the reve-

lation principle, we can restrict attention to incentive compatible direct mechanisms without

loss of generality. Since buyers’ locations are independent and identically distributed, we can

also restrict attention to direct mechanisms that are symmetric across the buyers. Moreover,

since buyers have single-unit demand, we can restrict attention to allocation rules that ran-

domize over the set {(0, 0), (0, 1), (1, 0)}, where (a, b) denotes an allocation of a units of good

0 and b units of good 1.16 We therefore focus on incentive compatible direct mechanisms

〈Q, T 〉, where Q = (Q0, Q1) denotes the allocation rule and T denotes the transfer rule. The

allocation rule

Q : [0, 1]N → ∆ ({(0, 0), (1, 0), (0, 1)})

maps the vector of buyer reports to the set of probability measures over {(0, 0), (1, 0), (0, 1)},
so that Q`(xn,x−n) denotes the probability that buyer n ∈ N receives a unit of good

` ∈ {0, 1} upon reporting location xn ∈ [0, 1] when the other buyers report the vector of

locations x−n ∈ [0, 1]N−1. Accordingly, the probability that buyer n is not allocated either

good at the reported type profile (xn,x−n) is 1 − Q0(xn,x−n) − Q1(xn,x−n). The transfer

rule

T : [0, 1]N → R

maps the vector of reports to the payments made to the designer, where T (xn,x−n) is the

payment made by buyer n ∈ N upon reporting location xn ∈ [0, 1] when the other buyers

report the vector of locations x−n ∈ [0, 1]N−1. By the Birkhoff–von Neumann theorem, a

direct allocation rule Q satisfies allocative feasibility if and only if, for all ` ∈ {0, 1} and

x ∈ [0, 1]N , we have ∑
n∈N

Q`(xn,x−n) ≤ K`. (AF)

We say that a direct allocation rule Q satisfies free disposal if truthful buyers never receive

a good they would like to discard. That is, for all xn ∈ [0, 1] such that xn > v, yn ∈ [0, 1]

such that 1− yn > v and reported type profiles x−n ∈ [0, 1]N−1, we have

Q0(xn,x−n) = 0 and Q1(yn,x−n) = 0. (FD)

Since buyers’ gross payoffs only depend on what they ultimately consume, focusing on allo-

cation rules that satisfy (FD) is without loss of generality under free disposal. For brevity,

16This representation is without loss of generality: A buyer at x who receives (1, 1) derives the same utility
from (1, 0) if x ≤ 1

2 and from (0, 1) if x ≥ 1
2 .
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we refer to mechanisms satisfying (AF) and—with free disposal—(FD) as feasible.

Given a direct mechanism 〈Q, T 〉, we let

q`(x) := Ex−n [Q`(x,x−n)]

denote the interim probability that a given buyer obtains a unit of good ` ∈ {0, 1} upon

reporting location x ∈ [0, 1], assuming all other buyers report truthfully for all possible type

profiles x−n ∈ [0, 1]N−1. Similarly, we let

t(x) := Ex−n [T (x,x−n)]

denote the interim expected payment made by a given buyer upon reporting location x ∈
[0, 1], assuming that all other buyers report truthfully for all possible type profiles. We let

u(x, y) be the interim expected payoff of a buyer at x who reports y, assuming all other

buyers report truthfully. We have u(x, y) = q0(y)(v − x) + q1(y)(v − 1 + x) − t(y) under

no disposal and u(x, y) = q0(y) max{v − x, 0} + q1(y) max{v − (1− x), 0} − t(y) under free

disposal. Let u(x) := u(x, x) be the interim expected payoff of a buyer at x under truthful

reporting. A direct mechanism 〈Q, T 〉 satisfies (Bayesian) incentive compatibility (IC) if,

for all n ∈ N and x, y ∈ [0, 1],

u(x) ≥ u(x, y). (IC)

The mechanism satisfies (interim) individual rationality (IR) if, for all x ∈ [0, 1],

u(x) ≥ 0. (IR)

Given a direct mechanism 〈Q, T 〉, we let U(xn, yn,x−n) denote the ex post payoff of buyer

n upon reporting yn at type profile x = (xn,x−n). This payoff is evaluated after all

reports are submitted but before any randomization by the designer occurs. We have

U(xn, yn,x−n) = Q0(yn,x−n)(v − xn) +Q1(yn,x−n)(v − (1− xn))− T (yn,x−n) without dis-

posal and U(xn, yn,x−n) = Q0(yn,x−n) max{v−xn, 0}+Q1(yn,x−n) max{v− (1−xn), 0}−
T (yn,x−n) with free disposal. Let U(xn,x−n) := U(xn, xn,x−n) denote buyer n’s ex post

payoff upon truthfully reporting xn at type profile x = (xn,x−n). A direct mechanism

〈Q, T 〉 satisfies dominant strategy incentive compatibility (DIC) if, for all xn, yn ∈ [0, 1] and

x−n ∈ [0, 1]N−1,

U(xn,x−n) ≥ U(xn, yn,x−n). (DIC)
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It satisfies ex post individual rationality (EIR) if, for all x ∈ [0, 1]N ,

U(xn,x−n) ≥ 0. (EIR)

Given a direct mechanism 〈Q, T 〉, we can write expected revenue R, expected social surplus

SS and expected consumer surplus CS as

R(Q, T ) = N

∫ 1

0

t(x)dF (x), SS(Q, T ) = N

∫ 1

0

[(v − x)q0(x) + (v − (1− x))q1(x)]dF (x),

CS(Q, T ) = N

∫ 1

0

[(v − x)q0(x) + (v − (1− x))q1(x)− t(x)]dF (x).

The designer’s problem is to maximize expected revenue R(Q, T ) over the set of feasible

direct mechanisms 〈Q, T 〉 that satisfy (IC) and (IR).

3 Optimal auctions

In this section, we provide an overview of the main results of the paper, deferring the formal

analysis and details to Section 4. We begin by defining several auction formats that will play

a central role in the results that follow.

Independent and standalone auctions If the seller runs an auction with a reserve price

of r` for the units of good ` ∈ {0, 1}, then these auctions are naturally said to be independent

if they do not “overlap,” in the sense that v − r0 ≤ r1 + 1− v holds. Independence implies

that buyers with locations x ∈ (v−r0, r1 +1−v) do not participate in either auction. Under

efficiency we must have r0 = r1 = 0. Consequently, independent auctions are efficient if and

only if v ≤ 1/2.

We say that we have a standalone auction for good ` ∈ {0, 1} if K−` = 0. Letting r∗` (v)

denote the optimal reserve price for the standalone auction at location ` ∈ {0, 1}, we have

r∗0(v) = v − ψ−1S (v) and r∗1(v) = v − (1− ψ−1B (1− v)).

Note that setting a reserve price of r∗` (v) in either a second-price or first-price auction is

sufficient to implement the optimal mechanism for selling K` units of good ` in a standalone

auction because the buyers draw their types from identical distributions and the virtual type

functions are increasing (see, e.g., Myerson, 1981).17

17Naturally, if K` > 1, then a standard and straightforward generalization of these formats accommodates
multi-unit supply. Specifically—under both formats—the bidders with the K` highest bids win, provided
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Two separate auctions with reserve prices r∗` (v) with ` ∈ {0, 1} are independent if and

only if v ≤ vNO, where vNO satisfies vNO − r∗0(vNO) = r∗1(vNO)− vNO + 1, or equivalently,18

ψ−1S (vNO) = ψ−1B (1− vNO). (3)

Moreover, because ψ−1S (1/2) < 1/2 < ψ−1B (1/2), it follows that vNO > 1/2. For example, for

F (x) = x, we have vNO = 1. For v ≤ vNO, we refer to (first- or second-price) auctions with

reserves r∗0(v) and r∗1(v) as independent auctions with optimal reserves or, for brevity, simply

as independent auctions. As we will see, whether independent auctions are optimal depends

on v.

Lottery-augmented auctions A direct mechanism 〈Q, T 〉 is a lottery-augmented auction

(LA) if q0(x) is decreasing in x, q1(x) is increasing in x and if there exists a strict subinterval

[x, x] ⊂ [0, 1] and a constant q ∈ (0, 1/2] such that: (i) q0(x) = q1(x) = q for all x ∈ [x, x],

(ii) q0(x) > q1(x) for all x < x, and (iii) q0(x) < q1(x) for all x > x. We refer to the interval

L := [x, x] as the lottery interval, as all types in L are allocated 2q units of a fifty-fifty lottery

at the interim stage under a lottery-augmented auction.

With these definitions in place, we can now describe the optimal selling mechanisms for

the Hotelling model. We first provide necessary and sufficient conditions for the optimal

selling mechanism to consist of two independent auctions. We then show that the optimal

selling mechanism is otherwise a lottery-augmented auction, and provide a characterization

of its allocation rule Q. We conclude this section by describing how the optimal auction can

be implemented using a two-stage clock auction.

3.1 Optimality and non-optimality of independent auctions

Our first proposition (which is formally proven in Section 4.3), shows that the optimal

mechanism either consists of two independent auctions or is a lottery-augmented auction. It

also provides the necessary and sufficient conditions under which each format is optimal.

Proposition 1. Fix a type distribution F . An optimal selling mechanism consists of in-

dependent auctions with reserve prices r∗0(v) and r∗1(v) if and only if v ≤ vLA, where

these exceed the reserve price. In the generalized second-price auction, the winners pay the maximum of the
K` + 1st highest bid and the reserve. In the generalized first-price auction, all winners pay their bids.

18Since r∗0(v) < v and r∗1(v) < v for any v > 0, the condition vNO − r∗0(vNO) = r∗1(vNO) − vNO + 1
implies that ψ−1S (vNO) < 1 and ψ−1B (1 − vNO) > 0, i.e., vNO must be sufficiently small. Consequently, the
condition simplifies to ψ−1S (vNO) = ψ−1B (1− vNO). Our monotonicity assumptions ensure that the function
v 7→ ψ−1S (v)−ψ−1B (1− v) is strictly increasing, equals −1 at v = 0, and is positive for sufficiently large v. It
follows that there exists a unique vNO satisfying ψ−1S (vNO) = ψ−1B (1− vNO).
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vLA ∈ [1/2, vNO). An optimal selling mechanism involves a lottery-augmented auction if

and only if v ≥ vLA. If v 6= vLA, then the optimal (direct) selling mechanism is unique up

to a set of measure zero. The threshold vLA does not depend on the parameters K0, K1, and

N . With free disposal, vLA > 1/2; with no disposal, vLA = 1/2.

With no disposal, the characterization is particularly sharp: The optimal mechanism

consists of independent auctions if v ≤ 1/2 and a lottery-augmented auction if v ≥ 1/2.

Under free disposal, the threshold vLA is larger than 1/2 but less than the threshold vNO

defined in (3). The thresholds vLA and vNO depend on the type distribution F but are

independent of the parameters K0, K1, and N . For vNO, this reflects the well-known fact

that in standard auction problems the optimal reserve does not depend on the number of

buyers or the number of units for sale.

To build intuition for why independent auctions are not always optimal, and how a

lottery-augmented auction can increase the designer’s revenue, suppose v = vNO − ε for

some small ε > 0. By construction, the seller can then run independent auctions for good

0 and good 1 with respective reserve prices of r∗0 and r∗1. Under these reserve prices, buyers

with locations x ∈ (v− r∗0, r∗1 − v+ 1) do not participate in either auction and, provided ε is

sufficiently small, each of these types satisfies v > max{x, 1 − x}.19 Suppose that after the

independent auctions conclude, at least one unit of good 0 and one unit of good 1 remain

unsold (as fewer than K0 buyers bid on good 0 and fewer than K1 bid on good 1). Instead

of leaving this inventory unsold, the seller can increase revenue by charging (some) buyers

with x ∈ (v − r∗0, r
∗
1 + 1 − v) a price of v − 1/2 for a fifty-fifty lottery over good 0 and

good 1.20 Since buyers in (v − r∗0, r
∗
1 + 1 − v) satisfy v > max{x, 1 − x} and still expect

zero surplus, this strategy increases revenue while preserving incentive compatibility and

respecting any free disposal constraints. Although this specific lottery-augmented auction is

not optimal, it shows that lottery augmentation generates strictly more revenue than running

two independent auctions with the reserves r∗0 and r∗1. The central contribution of this paper

is to provide a complete characterization of when lottery-augmented auctions are optimal

and to derive an explicit procedure for computing them.

Next, we consider the effects of using the optimal selling mechanism on consumer and

social surplus, relative to using independent auctions. To that end, we let R∗(v), SS∗(v)

and CS∗(v) denote revenue, social surplus, and consumer surplus under the optimal selling

mechanism (these are defined for an arbitrary direct selling mechanism 〈Q, T 〉 at the end

19For all v ≤ vNO, x̃0 := v − r∗0 satisfies v > x̃0 and x̃1 := r∗1 − v + 1 satisfies v > 1− x̃1. Consequently, if
x̃1 − x̃0 is sufficiently small (i.e., if ε is sufficiently small), then for all x ∈ [x̃0, x̃1], v > max{x, 1− x}.

20If the seller cannot offer every type in (v − r∗0 , r∗1 + 1 − v) a fifty-fifty lottery over good 0 and good 1,
the designer can ration these buyers uniformly at random.
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of Section 2). Similarly, for v ≤ vNO, we let RIA(v), SSIA(v) and CSIA(v) denote revenue,

social surplus, and consumer surplus under independent optimal auctions.

We illustrate the quantitative effects of using the optimal mechanism, relative to two

independent auctions with optimal reserves, under the uniform distribution. Since vNO =

1 in this case, we restrict attention to values v ≤ 1. For N = 2 and K0 = K1 = 1,

Figure 1 then provides an illustration of expected revenue and expected social surplus under

the optimal selling mechanism relative to independent auctions, distinguishing between free

disposal and no disposal, by displaying R∗(v)
RIA(v)

− 1, SS∗(v)
SSIA(v)

− 1 and CS∗(v)
CSIA(v)

− 1. As the figure

illustrates, revenue under the optimal mechanism can be more than 45% larger than that

from independent auctions (i.e., we have R∗(1)
RIA(1)

= 29
20

).21 An important driver of this result

is the fact that independent auctions may fail to sell one or both goods in cases where it

is optimal (and efficient) to do so. For example, at v = 1, with independent auctions one

of the goods remains unsold with probability 1/2, while both goods are always sold under

the optimal mechanism. This also suggests that the optimal mechanism may create more

social surplus. This is corroborated by the results displayed in panel (b). The discontinuous

increase in social surplus that occurs as soon as free disposal no longer prevents the designer

from optimally using a lottery-augmented auction arises due to a market expansion effect.

Under lottery-augmented auctions, all buyer types are served with positive probability and,

for values of v in a neighborhood of the threshold at which they become optimal, they allocate

goods efficiently to a larger set of types than under independent auctions.22 Since revenue

increases continuously while social surplus exhibits a discontinuous jump at this threshold,

it follows that consumer surplus must also increase discontinuously when lottery-augmented

auctions become optimal.

It is also worth noting that the optimal mechanism in the Hotelling setting is never

efficient. This contrasts with standard auction settings, in which the optimal mechanism

coincides with an efficient auction whenever the seller’s cost is sufficiently small relative to

the buyers’ values. For example, if the buyers’ values are uniformly distributed on [v, v + 1]

and the seller’s cost is 0, then the optimal mechanism is efficient for any v ≥ 1. Moreover, the

intuition gleaned from Bulow and Klemperer (1996)—that attracting an additional buyer to

an efficient auction leads to a larger increase in the seller’s revenue than using the optimal

selling mechanism—does not apply to the Hotelling setting. For example, assume no disposal,

21These calculations—which build on the analysis in Section 4—can be found in Appendix OB.
22For F uniform, v = 1 and N = K0 = K1 = 1, the revenue from the optimal mechanism is 25% larger

than the revenue from two independent auctions with optimal reserves. This is the same percentage increase
as going from an efficient to an optimal auction in a standard auction setting with two bidders, uniformly
distributed values on [0, 1] and a seller’s cost of 0. (The expected revenue of an efficient (optimal) standard
auction with two bidders and uniformly distributed values on [0, 1] is 1/3 (5/12).)
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Figure 1: For F (x) = x,N = 2 and K0 = K1 = 1 the figure displays the changes in revenue,
social and consumer surplus from using the optimal selling mechanism relative to running
independent auctions with optimal reserves v/2. That is, the figure displays the funcions
R∗(v)
RIA(v)

− 1, SS∗(v)
SSIA(v)

− 1 and CS∗(v)
CSIA(v)

− 1 under no disposal and free disposal.

F (x) = x, K0 = K1 = 1 and take any v = 1/2 + ε, where ε > 0 is sufficiently small. Then

the seller’s expected revenue from running the optimal selling mechanism with two buyers

exceeds that from efficiently selling to three buyers.23

For any function h(x), let h(x+) = limy↓x h(y) and h(x−) = limy↑x h(y). We then have

the following formalization and generalization of the behavior displayed in Figure 1.

Proposition 2. For any F , K0, K1 and N and assuming free disposal, we have
SS∗(v+LA)

SSIA(v+LA)
>

SS∗(v−LA)

SSIA(v−LA)
= 1,

CS∗(v+LA)

CSIA(v+LA)
>

CS∗(v−LA)

CSIA(v−LA)
= 1 and

R∗(v+LA)

RIA(v+LA)
=

R∗(v−LA)

RIA(v−LA)
= 1.

We do not provide an independent proof of Proposition 2. The revenue result stems

from the continuity of the value function in the parameter v. The social surplus result is

an implication of that continuity and of the discontinuous increase in consumer surplus at

v = vLA (which in turn is implied by Proposition 3 below).

A natural interpretation of lottery-augmentation is that it constitutes a form of price

discrimination that permits the designer to extract additional rents. While it is well known

that price discrimination can increase aggregate social and aggregate consumer surplus, a

considerably stronger result holds in the Hotelling setting: Under free disposal and for v

in the neighborhood of vLA, the use of lottery-augmented auctions in lieu of independent

auctions benefits every type of buyer. To state this formally, let u∗(x, v) and uIA(x, v) denote

the interim expected payoff of a buyer of type x under the optimal selling mechanism and

under independent optimal auctions, respectively. We then have the following:

23As we show in Appendix OB, for v ∈ (1/2, 1], the designer’s revenue under the optimal mechanism with
N = 2 buyers is −5/8 + 3v/2 + v2/2− v3/6, while the maximum revenue that the designer can raise while
implementing the efficient allocation with N = 3 buyers is −7/4 + 6v − 6v2 + 4v3 − v4. If v < 0.58475,
we then have −5/8 + 3v/2 + v2/2 − v3/6 > −7/4 + 6v − 6v2 + 4v3 − v4 as required. Interestingly, under
otherwise identical conditions and for v < 0.526596, even two independent auctions with optimal reserves
and two buyers generate more revenue than two efficient auctions with three buyers.
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Proposition 3. Under free disposal, u∗(x, v+LA) ≥ uIA(x, v+LA) holds for all x ∈ [0, 1], with

strict inequality for all x < 1− vLA, all x > vLA or both.

A formal proof of this result—which builds on the analysis in Section 4—can be found in

Appendix OA.9. Intuitively, without disposal, the optimal reserve prices under independent

auctions are such that the revenue contribution of the marginal types that participate is zero.

When the mechanism transitions to a lottery-augmented auction, the counterparts to these

reserves, which are v−x and v−x, are defined by the condition that marginal revenue equals

v−1/2. As a result, buyer types who participate under independent auctions receive strictly

lower surplus under the optimal lottery-augmented auction, with types that participate in the

lottery receiving zero surplus. Thus, without disposal, lottery augmentation unambiguously

reduces consumer surplus, type by type. In contrast, with free disposal and at the threshold

v = vLA, marginal revenue is negative for types in [x, x0) and (x1, x], who are either allocated

their nearest good or nothing. The optimal selling mechanism therefore trades off these

negative revenue contributions against the positive marginal revenue of v−1/2 from types in

[x, x], who are allocated either good with equal probability. Consequently, with free disposal,

all buyers are weakly better off at the threshold v = vLA where lottery augmentation becomes

optimal.

3.2 Clock auction implementation

We now explain how the optimal selling mechanism can be implemented in dominant strate-

gies using clock auctions. As this result is immediate when independent auctions are optimal,

for the remainder of this section we assume that v > vLA and focus on the case where lottery-

augmented auctions are optimal.

3.2.1 Ex post allocation rules of lottery-augmented auctions

Before turning to the clock auction implementation of the optimal mechanism, it is useful

to elaborate in some detail on its ex post allocation rule. For ease of exposition, we first

restrict attention to the case with no disposal.

Consider the optimal lottery-augmented auction, parameterized by its lottery interval

L := [x, x]. The optimal ex post allocation can then be described as follows. Given a

vector x ∈ [0, 1]N of buyer reports, the seller partitions the buyers into three categories:

E0 := [0, x), L = [x, x], and E1 := (x, 1].24 The seller first prioritizes buyers in the interval

E0 for access to the units of good 0. If there are more than K0 buyers inside this interval,

24Here, “E” stands for “efficient.”
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then the K0 buyers with the smallest locations obtain a unit of good 0, and otherwise, all

buyers in E0 receive a unit of good 0. Next, the seller turns to buyers in the interval E1,

who have priority for good 1. If there are more than K1 buyers inside this interval, then the

K1 buyers with the largest locations obtain a unit of good 1, and otherwise, all buyers in

E1 obtain a unit of good 1. (Naturally, the seller could equivalently begin with buyers in E1

and then turn to those in E0.)

After serving the buyers with priority for goods 0 and 1, the seller turns to the buyers in

the lottery interval L. If there are leftover units available at both locations, then the seller

offers these buyers a lottery over the remaining units.25 If the seller has leftover units of only

one good, which we denote by `, the subsequent allocation depends on the quantity of these

units relative to the number of buyers in L. If the number of buyers in this interval exceeds

the available supply, then the seller uniformly rations the units among them. Conversely, if

the available supply of good ` is at least as large as the number of buyers in L, then every

buyer in this interval receives a unit of good `. Additionally, if any buyers who were initially

prioritized for the alternative good −` remain unserved, the seller allocates the remaining

units of good ` to as many of them as possible, subject to the condition that x ≥ ψ−1B (v) if

` = 1 and x ≤ ψ−1S (1− v) if ` = 0.26 Among those satisfying this condition, priority is given

to buyers located closest to good `.

We now briefly discuss, at a high level, how the ex post allocation is affected with free

disposal, deferring a more detailed description to Section 4.3. These constraints can bind

in two distinct ways: (i) without altering the ironing procedure that determines the lottery

interval L = [x, x], or (ii) by also altering the ironing procedure itself. Case (i) arises when

x < v and x > 1 − v. In this case, free disposal merely prevents the seller from assigning

good 0 (good 1) to buyers located above v (below 1 − v).27 Case (ii) is more involved and

may require introducing up to two additional categories, one on each side of the lottery

interval. We denote these categories by R0 := [x0, x) and R1 := (x, x1], where x0 ∈ (0, x)

and x1 ∈ (x, 1), and refer to them as rationing categories.28 If units of good 0 remain after

all priority buyers have been served (i.e., fewer than K0 buyers have types in [0, x0)), then

buyers in R0 are randomly assigned either good 0 or nothing, independently of their location

within this interval. A symmetric rule applies to good 1 and buyers in R1, while buyers in

25As we will see in Section 4.3, the precise lottery the designer offers these buyers is uniquely determined
by the requirement that the set of ex post allocations is consistent with the optimal interim allocation.

26The condition x ≥ ψ−1B (v) (resp. x ≤ ψ−1S (1− v)) ensures that the seller is willing to serve type x good
1 (resp. good 0).

27In this case, the previous description of the ex post allocation rule continues to apply, except that the
seller only serves buyers with initial priority at location ` ∈ {0, 1} at the alternative location −` if they
satisfy x ∈ [1− v, v].

28If the category [x0, x) (resp. (x, x1]) is required, this implies that x = 1− v (resp. x = v).
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L may be randomly allocated either good. The precise lotteries offered to the buyers in the

intervals R0, L and R1 are jointly determined and uniquely pinned down by the requirement

that the set of ex post allocations is consistent with the optimal interim allocation (see

Section 4.3 for the details).

3.2.2 Two-stage clock auctions with participation fees

The description of the ex post allocation rules of the lottery-augmented auctions makes it

relatively straightforward to see how and why these allocation rules can be implemented,

in dominant strategies, via two-stage clock auctions. To streamline the exposition, we first

focus, again, on the case with no disposal.

Consider a lottery-augmented auction parameterized by the lottery interval L = [x, x] ⊂
[0, 1]. In the first stage of the corresponding clock auction, the seller sets starting prices

of s0 = v − x and s1 = v − (1 − x) for goods 0 and 1, respectively. Bidders then coarsely

indicate their preferences with respect to these starting prices by choosing among three

mutually exclusive categories or “bins,” corresponding to the subintervals E0, L and E1.

Bidders who select bin E` with ` ∈ {0, 1} convey to the auctioneer that they have a strong

preference for good ` and are willing to buy a unit at the price s`. In contrast, bidders who

select bin L indicate greater flexibility relative to those who choose an extremal bin, but that

they are also unwilling to purchase either good at its starting price. The number of coarse

bids in each bin is not revealed to the bidders.

Now consider the second stage of the clock auction. If the number of bids in bin ` ∈ {0, 1}
is weakly greater than K`, then an ascending-price clock auction is run to reduce demand

to exactly K`. The K` highest-valued bidders (as revealed through their dropout prices) are

allocated units of good `. In contrast, if the number of bids in bin ` is strictly less than

K`, then all these bidders are allocated a unit of good `, and no ascending-price auction is

run for good `. If first-stage demand for good ` is strictly greater than the supply K`, the

final price paid by winning bidders in the ensuing ascending-price auction strictly exceeds

s`. Otherwise, the price of bidders who are allocated a unit of good ` with certainty may lie

strictly below s`. This is why s0 and s1 serve only as starting prices for the ascending-price

auctions and should not be interpreted as reserve prices.

Once bins 0 and 1 have cleared—meaning either all K` units of good ` are allocated to

the bidders who chose bin ` in the first stage, or all such bidders are allocated a unit—any

residual supply is allocated among the remaining bidders in a manner that is consistent

with the optimal ex post allocation rule. This includes the flexible bidders who selected bin

L in the first stage: These bidders receive an identical ex post allocation that, with posi-

tive probability, consists of a lottery over units of both types of good. All bidders pay the
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dominant strategy prices associated with their allocation, which satisfy ex post individual

rationality—evaluated prior to any randomization by the mechanism—with equality for the

(ex post) worst-off types. As we show in Section 4.4, the dominant strategy prices for our

model of horizontal differentiation are computed in a standard and conceptually straight-

forward fashion familiar from models of vertical differentiation, starting from the types that

are ex post worst off.

As a simple illustration of how dominant strategy prices depend on other bidders’ types,

consider the case with K0 = K1 = 1, and N = 2. If x1 < x and x < x2, bidder 2’s dominant

strategy price for being allocated good 1 with certainty is v − (1 − x1), while bidder 1’s

dominant strategy price for being allocated good 0 with certainty is v − x2. Observe that

computing each bidder’s price requires information about the other bidder’s type. This means

that the mechanism may need to infer the willingness to pay of the marginal winner—that is,

the bidder with the K`-th highest willingness to pay for good `. Operationally, configurations

like these require continuing the clock auction until only K` − 1 active bidders remain. Yet,

all K` bidders with the highest willingness to pay are allocated a unit of good ` with certainty

and pay the corresponding dominant strategy price. This can be achieved analogously to the

“no bid information” clock auction in Ausubel (2004): During the ascending-price auction

phase, bidders are only informed whether the auction price is increasing, has stopped, or

never increased beyond the starting price s`. Crucially, bidders are not told whether they

have already “clinched” a unit. This preserves dominant-strategy truthfulness even though

the final prices may depend on the willingness to pay of the marginal winners.

To implement the optimal mechanism in dominant strategies, the designer must ensure

that each bidder’s interim expected payment matches that under the direct mechanism

satisfying interim individual rationality. This is achieved by charging an upfront participation

fee. The need for such a fee reflects a feature specific to our setting involving countervailing

incentives: The types that are interim versus ex post worst off may be disjoint sets. As

discussed in the introduction (and formalized in Lemma 6 in Section 4.4), this divergence

implies that a mechanism satisfying ex post individual rationality may leave revenue “on the

table” relative to one satisfying interim individual rationality with equality. To illustrate,

suppose there is no disposal and consider the parameterization with v > 1/2, K0 = K1 = 1,

N = 2, and F (x) = x, which implies that the lottery interval is L = [1/4, 3/4]. The point of

interest is the expected payment made by types in L, as these are the interim worst-off types.

Since these types receive each good with probability 1/2 under the optimal lottery-augmented

auction, their interim gross utility is v− 1/2. This is also the transfer they pay in the direct

mechanism. However, in the dominant-strategy implementation satisfying ex post individual
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rationality, the expected transfer for a buyer with x ∈ L is only v − 11/16.29 Relative to

the direct mechanism, this leaves 3/16 “on the table.” By charging this amount upfront as

a participation fee, the two-stage clock auction satisfies interim individual rationality and

fully implements the optimal mechanism in dominant strategies.

Formally, the following theorem summarizes the dominant strategy implementation de-

scribed in this section. It establishes that the two-stage clock auction implements the optimal

mechanism in weakly dominant strategies—both with and without free disposal.30 The al-

location and payment rules under this implementation coincide with those of the optimal

direct mechanism, and interim individual rationality is satisfied via an appropriately chosen

upfront participation fee. To state the theorem, one additional piece of terminology is re-

quired. We say that buyers bid sincerely if: They select the bin that corresponds to their

type in the first stage; and they become inactive when the ascending-price auction for good 0

(good 1) reaches the price v−x (v−(1−x)) if their type satisfies v−x > s0 (v−(1−x) > s1)

after selecting bin E0 (E1) in the first stage.

Theorem 1. The two-stage clock auction makes sincere bidding a weakly dominant strategy

for every buyer, and the equilibrium in weakly dominant strategies implements the allocation

rule of the optimal mechanism. If every buyer pays an appropriately chosen upfront fee to

participate, then the two-stage clock auction implements the optimal mechanism in weakly

dominant strategies subject to interim individual rationality.

The two-stage clock auction equips bidders with a simple yet expressive bidding language

in the first stage that allows them to communicate the strength of their preferences for each

good relative to the designer’s starting prices. This structure enables the designer to extract

additional revenue by selectively excluding certain bidders from any second-stage auctions

and reallocating excess supply via lottery. This auction format also maximizes privacy

subject to dominant strategy implementation: Flexible bidders never reveal their types, and

the inframarginal bidders do not reveal their willingness to pay unless their preferred good is

29To see this, note that buyer 1 receives good 1 with with certainty and pays v− (1− x2) when x2 < 1/4;
receives good 0 with certainty and pays v − x2 when x2 > 3/4; and, receives either good with probability

1/2 and pays v − 1/2 when x2 ∈ [1/4, 3/4]. The expected transfer is thus
∫ 1/4

0
(v − x2) dx2 + (v − 1/2)/2 +∫ 1

3/4
(v − (1− x2)) dx2 = v − 11/16.

30When up to five bidding categories are required due to binding free disposal constraints, the designer
introduces additional starting prices in the coarse bidding stage. In particular, if x = 1−v (resp. x = v) and
the bin R0 = [x0, x) (resp. R1 = (x, x1]) is required, then the starting prices for good 0 (resp. 1) are v − x0
and v − x (resp. v − (1 − x1) and v − (1 − x)). However, only buyers who bid at the higher starting price
of v − x0 (resp. v − (1− x1)) participate in the corresponding second-stage clock auction, if one is required.
The purpose of the additional categories is to divide the “flexible” bidders into subintervals—and identify
those within the lottery interval L = [x, x]—so that each group receives the appropriate ex post lottery. This
ensures that the ex post allocation remains consistent with the optimal interim allocation rule and enables
the seller to compute the corresponding dominant strategy payments.
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overdemanded. Privacy is only lost when eliciting the marginal winner’s value is necessary

to compute the dominant strategy prices paid by others.

We conclude this section by briefly discussing the possible implications of our analysis for

online advertising auctions. As noted earlier, many platforms—including Google’s—sell hor-

izontally differentiated impressions using independent auctions. While this is not generally

optimal, our analysis shows how to optimally deploy independent auctions conditional on the

outcome of an initial coarse bidding phase. Interestingly, industry practices have evolved in

ways that mirror the structure of our two-stage clock auction. Early on, impressions were sold

largely through direct contracts, but the introduction of real-time bidding in the late 2000s

shifted most of the inventory to auctions. Today, hybrid models dominate: Large advertisers

secure guaranteed contracts for targeted impressions, while remaining inventory—including

untargeted impressions—is sold using auctions. Untargeted impressions function as a de

facto lottery: Advertisers cannot perfectly control which impressions they receive, so al-

location across buyers has a randomized component. This enhances the value of targeted

impressions and incentivizes advertisers to pay higher prices for them. The transition from

fully auction-based selling to a hybrid model involving guaranteed contracts and random-

ized allocation closely parallels the logic and structure of the lottery-augmented mechanisms

analyzed in this paper.31

4 Mechanism design analysis

We now turn to the underlying mechanism design problem and formally characterize the

optimal mechanism. If v ≤ 1/2, then each buyer has a positive value for at most one good.

Consequently, the mechanism design problem decomposes into two independent single-good

auction problems, in which case the optimal mechanism consists of two independent auctions

with optimal reserve prices.32 We therefore focus on the case where v > 1/2. Unless otherwise

stated, incentive compatibility and individual rationality refer to the Bayesian and interim

versions—namely, (IC) and (IR)—and interim worst-off types are simply called worst-off

types.

For v > 1/2, the seller faces a mechanism design problem involving non-trivial horizontal

differentiation in which the allocation rule is inherently two-dimensional. Nevertheless, two

classical properties from one-dimensional mechanism design continue to apply. First, in-

31For foundational models of hybrid allocation between guaranteed contracts and real-time auctions, see
Balseiro et al. (2014) and Sayedi (2018). For an overview of the evolution of programmatic advertising
and the rise of hybrid formats, see Choi et al. (2020). Bergemann et al. (2023) analyze how platforms use
managed campaigns and data-augmented auctions to segment targeted and untargeted impressions.

32That is, the setting reduces to two copies of the classical auction problem of Myerson (1981).
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centive compatibility imposes a monotonicity constraint : (IC) implies that, for any feasible

direct allocation rule 〈Q, T 〉, the interim allocation rule q satisfies

q1(x)− q0(x) is increasing in x, (M)

with the additional requirement that, under free disposal, q0(1− v) ≥ q0(x) for all x ≥ 1− v
and q1(v) ≥ q1(x) for all x ≤ v.33 As (M) shows, (IC) does not require that q0 or q1 are

individually monotone. Second, the envelope theorem (Milgrom and Segal, 2002) applies:

Under (IC), for any type x, x̂ ∈ [0, 1], the interim payoff satisfies

u(x) = u(x̂) +

∫ x

x̂

(q1(y)− q0(y)) dy. (ICFOC)

Moreover, a feasible direct mechanism 〈Q, T 〉 is incentive compatible if and only if (M) and

(ICFOC) hold. Together, these conditions imply that the interim payoff function u is convex

and that u′(x) = q1(x) − q0(x) holds almost everywhere. In particular, any type x̂ such

that u′(x̂) = 0 is a worst-off type.34 Letting Q denote the set of feasible ex post allocation

rules satisfying monotonicity (M), the following result characterizes the set of worst-off types

under any feasible, incentive compatible direct mechanism.

Lemma 1. Under any feasible, incentive compatible direct mechanism 〈Q, T 〉, the set of

interim worst-off types, denoted Ω(Q) := argminx∈[0,1]{u(x)}, depends only on Q. If there

exists x ∈ [0, 1] such that q1(x) − q0(x) = 0, then Ω(Q) = {x ∈ [0, 1] : q1(x) − q0(x) = 0}.
Otherwise, Ω(Q) is a singleton with Ω(Q) = infx∈[0,1]{q1(x) − q0(x) > 0} if and Ω(Q) =

supx∈[0,1]{q1(x)− q0(x) < 0} if {x ∈ [0, 1] : q1(x)− q0(x) > 0} 6= ∅. Moreover, no single type

is worst off under every monotone feasible allocation rule, so
⋂

Q∈QΩ(Q) = ∅.

As discussed in the introduction, the non-trivial dependence of the set of worst-off types

on the interim allocation rule, highlighted in Lemma 1, is known as countervailing incen-

tives. In contrast to standard mechanism design settings—such as the auction problem

studied by Myerson (1981)—where the monotonicity constraint implies that the lowest type

is always worst off, here the identity of the worst-off types varies with the shape of the

interim allocation rule. For example, consider the allocation rules Q and Q̃ defined by

setting (Q0(x), Q1(x)) = (q, 0) and (Q̃0(x), Q̃1(x)) = (0, q), for some q > 0 satisfying

q < min{K0, K1}/N . Both of these allocation rules are feasible and monotone and, apply-

33Recall that under free disposal, feasibility requires that q0(x) = 0 for x > v and q1(x) = 0 for x < 1− v.
The additional monotonicity restrictions implied by (IC) bound q0 and q1 on [1 − v, v] in order to prevent
non-local deviations.

34For example, under any lottery-augmented auction, the types in L = [x, x] are worst off, since the interim
allocation rule satisfies q0(x) = q1(x) for all x ∈ L.
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ing the first part of Lemma 1, we have Ω(Q) = {1} and Ω(Q̃) = {0}. This shows that

Ω(Q) ∩ Ω(Q̃) = ∅ and proves the final statement of Lemma 1. The lack of a “universal”

worst-off type is a source of major complication in the analysis and, as we will see, drives

the divergence of expected revenue under interim versus ex post individual rationality.

To develop intuition for why incentive compatibility in the Hotelling setting only requires

that the difference q1(x) − q0(x) is monotone—and to see why fifty-fifty lotteries play a

prominent role in the analysis—it is helpful to consider a simple perturbation argument.

Fix an incentive compatible direct mechanism, and suppose that the designer can feasibly

increase both q0(y) and q1(y) by ∆ > 0 for some type y. Holding the payment rule fixed,

this adjustment increases the gross payoff of type y by 2∆(v − 1/2). Since the utility from

consuming 2∆ units of a fifty-fifty lottery is the same for every type, the designer can

fully extract this surplus—without violating incentive compatibility—by also increasing y’s

transfer by 2∆(v− 1/2). This argument illustrates why adjustments that leave q1(x)− q0(x)

unchanged preserve incentive compatibility and do not increase agents’ information rents.

It also shows why, feasibility permitting, offering a fifty-fifty lottery to some types generates

more revenue than excluding them altogether.

Using (ICFOC), we next back out the interim payoff of each type and derive the seller’s ex

ante expected revenue R(Q, T ). To that end, we introduce virtual type functions associated

with each good, denoted Ψ0 and Ψ1. These are

Ψ0(x, x̂, v) =

v − ψS(x), x < x̂

v − ψB(x), x ≥ x̂
and Ψ1(x, x̂, v) =

v − (1− ψS(x)), x ≤ x̂

v − (1− ψB(x)), x > x̂
,

where x̂ is referred to as the critical type. The critical type is the type at which these

piecewise defined functions switch from using the virtual cost to using the virtual value.

Proposition 4. For every critical type x̂ ∈ [0, 1], the designer’s ex ante expected revenue

under any feasible, incentive compatible direct mechanism 〈Q, T 〉 is given by

R(Q, T ) = N

∫ 1

0

[q0(x)Ψ0(x, x̂, v) + q1(x)Ψ1(x, x̂, v)] dF (x)︸ ︷︷ ︸
=:R̃(Q,x̂)

−Nu(x̂). (4)

As defined in (4), we refer to the component of the seller’s revenue that only depends on

the allocation rule and the virtual type functions as the virtual surplus function R̃(Q, x̂).
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4.1 Modular separability and saddle point condition

Mechanism design problems are typically approached by first solving for the optimal allo-

cation rule, then using payoff equivalence to determine the corresponding transfer rule by

making the individual rationality constraint bind for the worst-off types. This approach—

which is based on what we refer to as the modular separability of the allocation and transfer

rules—is what makes standard mechanism design problems tractable. In our setting, how-

ever, it is not a priori clear how to extend this approach. As Lemma 1 shows, there is no

single type that is worst off under every incentive compatible mechanism. Consequently,

the optimal allocation rule and the corresponding set of worst-off types need to be jointly

determined.

This section resolves this challenge and recovers the standard modular approach by pro-

ceeding in three steps. The starting point of the analysis is the expression for the seller’s

revenue in Proposition 4, which depends not only on the allocation rule Q, but also on

the interim payoff u(x̂) (i.e., allocation and transfer) of an arbitrarily chosen critical type

x̂ ∈ [0, 1]. First, we eliminate the transfer rule from the seller’s objective function by setting

u(x̂) = 0 in (4) and rewriting the seller’s problem as a constrained optimization problem.

Second, we characterize the set of worst-off types directly in terms of the virtual surplus

function, which is the seller’s objective function in the constrained optimization problem.

Third, we show that the optimal mechanism corresponds to a saddle point—that simulta-

neously determines the optimal allocation rule Q∗ and a worst-off type ω∗—of the virtual

surplus function.

To complete the first step of the analysis, we eliminate the transfer rule from the de-

signer’s objective by setting u(x̂) = 0 in (4). The designer’s revenue maximization problem

then reduces to finding the allocation rule Q that maximizes the virtual surplus function

R̃(Q, x̂), subject to the constraint that x̂ ∈ Ω(Q) (i.e., x̂ is a worst-off type under Q). How-

ever, directly solving this constrained optimization problem is difficult as the allocation rule

that maximizes R̃(Q, x̂) depends on x̂, and—as summarized in Lemma 1—the relationship

between Q and Ω(Q) is non-trivial.

For the second step, we introduce a more convenient characterization of the set of worst-

off types. Specifically, the following lemma identifies Ω(Q) as the set of critical types that

minimize the virtual surplus function.

Lemma 2. Given any incentive compatible direct mechanism 〈Q, T 〉, we have

Ω(Q) = arg min
x̂∈[0,1]

R̃(Q, x̂).
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Lemma 2 allows us to rewrite the designer’s problem as

max
Q∈Q

min
x̂∈[0,1]

R̃(Q, x̂), (5)

since this is equivalent to choosing Q to maximize R̃(Q, x̂), subject to the constraint x̂ ∈
Ω(Q). Finally, in the third step, we show that this constrained optimization problem can be

bypassed altogether. In particular, the following theorem establishes a saddle point structure

that characterizes the optimal mechanism in terms of the optimal allocation rule Q∗ and a

critical worst-off type ω∗.

Theorem 2. A saddle point (Q∗, ω∗) ∈ Q× [0, 1] of the virtual surplus function R̃ satisfies

Q∗ ∈ arg max
Q∈Q

R̃(Q, ω∗), (6)

ω∗ ∈ arg min
x̂∈[0,1]

R̃(Q∗, x̂). (7)

There exists a saddle point (Q∗, ω∗) ∈ Q×(0, 1) that solves (5) and characterizes the optimal

selling mechanism. Moreover, under free disposal, there exists a saddle point such that

ω∗ ∈ [1− v, v].

Theorem 2 offers a tractable method for solving the mechanism design problem. The

idea is to fix a candidate critical type x̂ ∈ (0, 1) and compute the allocation rules Q that

maximize the virtual surplus function R̃(Q, x̂), subject to monotonicity and feasibility. One

then checks whether the candidate type is worst-off under any of the maximizing allocation

rules (i.e., whether x̂ ∈ Ω(Q)). The optimal mechanism is parameterized by the critical type

ω∗ for which this consistency condition holds. In this way, the saddle point condition reduces

a constrained maximization problem into a collection of unconstrained problems—one for

each critical type x̂—followed by a simple check.

Theorem 2 extends beyond our specific setting and does not depend on the distributions

being identical, the transportation costs being linear or on the designer’s objective being

profit—any convex combination of social surplus and profit also yields the same result. A

result analogous to Theorem 2 also applies to many other mechanism design settings involving

countervailing incentives, including the optimal partnership dissolution problem studied by

Loertscher and Wasser (2019). However, in contrast to problems involving type-dependent

outside option—where the interim allocation of the worst-off types is uniquely determined

by their endowments—an additional challenge in our setting is that identifying the worst-off

types does not immediately pin down their interim allocations. This is a direct consequence

of the multi-dimensional nature of the allocation rule: Even if a type is equally likely to be
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allocated either good (i.e., q0(x) = q1(x) ≡ q), the magnitude of this allocation—q—remains

a free parameter that must be endogenously determined.

4.2 Strong monotonicity and ironing

In light of Theorem 2, the optimal mechanism can be characterized by determining, for each

critical type x̂ ∈ (0, 1), the allocation rule Q that solves (6) and maximizes the seller’s virtual

surplus function R̃(Q, x̂), subject to monotonicity and feasibility. However, as illustrated

in Figure 2, whenever x̂ ∈ (0, 1), the virtual type functions Ψ0(x, x̂, v) and Ψ1(x, x̂, v) are

not monotone in x. Specifically, Ψ0 increases discontinuously at x = x̂, while Ψ1 decreases

discontinuously at x = x̂. Consequently, although each virtual type function is separately

monotone on [0, x̂) and (x̂, 1], the discontinuities at x̂ imply that pointwise maximization

may yield allocation rules that violate the monotonicity constraint (M) implied by incentive

compatibility (see Panel (b) of Figure 2). This failure of regularity (i.e., violation of incen-

tive compatibility under pointwise maximization) is a direct consequence of countervailing

incentives and arises irrespective of the distribution F .

(a) Virtual type functions
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Figure 2: Panel (a) illustrates the virtual type functions Ψ0 and Ψ1 for F (x) = x, v = 1
and x̂ = 0.4. Panel (b) illustrates the corresponding interim allocation rule under pointwise
maximization, assuming a single-agent problem (i.e., K0 = K1 = N = 1).

A natural approach to address the aforementioned violation of regularity would be to

perform an appropriate ironing procedure on each virtual type function. That is, to replace

Ψ0(x, x̂, v) and Ψ1(x, x̂, v) with ironed counterparts that are decreasing and increasing in x,

respectively. After ironing, pointwise maximization necessarily yields an allocation rule Q

such that q1(x)− q0(x) is increasing in x, as required by monotonicity. However, separately

ironing each virtual type function implicitly imposes a stronger restriction: it forces the

interim allocations q0 and q1 to be independently monotone.
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To justify the proposed ironing procedure, we show that it is without loss of generality to

restrict attention to allocation rules that satisfy the following strong monotonicity condition:

q1(x) and − q0(x) are increasing in x, (SM)

with the additional requirement that, under free disposal, q0(1− v) ≥ q0(x) for all x ≥ 1− v
and q1(v) ≥ q1(x) for all x ≤ v. Intuitively, given an incentive compatible direct mechanism,

the designer can always reallocate fifty-fifty lottery units priced at v − 1/2 across types

without changing interim payoffs or revenue. By carefully performing such a reallocation, it

turns out that it is always possible to construct a new allocation rule that satisfies strong

monotonicity without violating any feasibility or free disposal constraints. Letting QSM

denote the set of feasible, strongly monotone allocation rules, the following lemma formalizes

this argument.

Lemma 3. Fix any feasible and monotone ex post allocation rule Q ∈ Q and corresponding

interim allocation rule q. Then there exists a feasible and strongly monotone ex post alloca-

tion rule Q̂ ∈ QSM and corresponding interim allocation rule q̂ such that: (i) q1−q0 = q̂1−q̂0,
and (ii)

∫ 1

0
(q`(x) − q̂`(x)) dF (x) = 0 for each ` ∈ {0, 1}. Consequently, Ω(Q) = Ω(Q̂) and,

under the profit-maximizing implementation of these allocation rules, the seller’s revenue is

invariant under the transformation that replaces Q with Q̂.

Lemma 3 allows us to proceed by separately ironing each of the virtual type functions.

In doing so, we must also account for any free disposal constraints that may apply.

No disposal We first compute the ironed virtual type functions Ψ0 and Ψ1 that apply

under no disposal. For each critical type x̂ ∈ (0, 1), applying the ironing procedure of

Myerson (1981) separately to the functions Ψ0(·, x̂, v) and Ψ1(·, x̂, v) yields

Ψ0(x, x̂, v) =


v − ψS(x), x < x(x̂)

z0(x̂, v), x ∈ [x(x̂), x(x̂)]

v − ψB(x), x > x(x̂)

, Ψ1(x, x̂, v) =


v − (1− ψS(x)), x < x(x̂)

z1(x̂, v), x ∈ [x(x̂), x(x̂)]

v − (1− ψB(x)), x > x(x̂)

.

Here, we refer to [x(x̂), x(x̂)] as the ironing or lottery interval and z0(x̂, v) and z1(x̂, v) as the

ironing parameters. The ironing interval does not depend on v and satisfies x̂ ∈ (x(x̂), x(x̂)).

Note that for all x, x̂ ∈ [0, 1] and v > 0, we have (Ψ0(x, x̂, v) + Ψ1(x, x̂, v))/2 = v − 1/2.

This property, which carries over to the ironed virtual type functions, implies that (z0(x̂, v)+

z1(x̂, v))/2 = v − 1/2 and that both virtual type functions yield the same ironing interval.
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The ironing interval and ironing parameters are pinned down by

x(x̂) = min
{

0, ψ−1S (v − z0(x̂, v))
}

= min
{

0, ψ−1S (1− v + z1(x̂, v))
}
, (8)

x(x̂) = max
{
ψ−1B (v − z0(x̂, v)) , 1

}
= max

{
1, ψ−1B (1− v + z1(x̂, v))

}
, (9)∫ x̂

x(x̂)

(v − ψS(x)− z0(x̂, v)) dF (x) =

∫ x(x̂)

x̂

(z0(x̂, v)− (v − ψB(x))) dF (x), (10)∫ x̂

x(x̂)

(v − (1− ψS(x))− z1(x̂, v)) dF (x) =

∫ x(x̂)

x̂

(z1(x̂, v)− (v − (1− ψB(x)))) dF (x). (11)

Note that if x̂ is sufficiently close to 0, then we have x(x̂) = 0 and if x̂ is sufficiently close to

1, then we have x(x̂) = 1.

Free disposal We first explain why a different ironing procedure may be required under

free disposal. In particular, the designer may want to allocate goods to agents whose willing-

ness to pay for these goods is negative. To see this, observe that the virtual type functions

Ψ`(x, x̂, v) have the property that their value (i.e., the designer’s marginal revenue) exceeds

the buyer’s willingness to pay for some types.35 To incorporate the additional constraints

imposed by free disposal, we modify the virtual type functions before applying the ironing

procedure. Specifically, we define

ΨFD
0 (x, x̂, v) :=

Ψ0(x, x̂, v), x ≤ v

−∞, x > v
, ΨFD

1 (x, x̂, v) :=

−∞, x < 1− v

Ψ1(x, x̂, v), x ≥ 1− v
.

By construction, these modified functions respect the free disposal constraints because it

is never optimal to allocate a unit to a buyer whose virtual value is −∞. We can then

separately apply the ironing procedure of Myerson (1981) to the virtual type functions

ΨFD
0 (·, x̂, v) and ΨFD

1 (·, x̂, v) in order to obtain the corresponding ironed virtual type func-

tions Ψ
FD

0 (·, x̂, v) and Ψ
FD

1 (·, x̂, v). This yields the ironing intervals [xFD0 (x̂, v), xFD0 (x̂, v)] ⊂
[x(x̂), x(x̂)] and [xFD1 (x̂, v), xFD1 (x̂, v)] ⊂ [x(x̂), x(x̂)] and the ironing parameters zFD0 (x̂, v)

and zFD1 (x̂, v), respectively.36 With free disposal, the ironing intervals associated with each

location may differ and depend on v. Nevertheless, we have x̂ ∈ (xFD(x̂, v), xFD(x̂, v)) :=

35Specifically, (2) implies that for x > x(x̂), we have Ψ0(x, x̂, v) = Ψ0(x, x̂, v) = v − ψB(x) > v − x, and
for x < x(x̂), we have Ψ1(x, x̂, v) = Ψ1(x, x̂, v) = v − (1− ψS(x)) > v − (1− x). Consequently, when v < 1,
free disposal may prevent the designer from allocating units of good 0 (good 1) to some types in the ironing
interval [x(x̂), x(x̂)] or to some types with x > x(x̂) (x < x(x̂)), even though the associated marginal revenue
is positive.

36These parameters are pinned down by sets of equations that are similar to (8), (9), (10) and (11), and
which we omit here for the sake of brevity.
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(xFD0 (x̂, v), xFD0 (x̂, v))∩ (xFD1 (x̂, v), xFD1 (x̂, v)). We refer to the interval [xFD(x̂, v), xFD(x̂, v)]

as the lottery interval.

For each critical type x̂ ∈ [1 − v, v], we can relate [x(x̂), x(x̂)] (i.e., the ironing interval

that applies when there are no binding free disposal constraints) to the gross valuation v

in order to say more about Ψ
FD

0 (·, x̂, v) and Ψ
FD

1 (·, x̂, v). In particular, if v ≥ x(x̂), then

the free disposal constraints do not affect the ironing procedure for good 0. However, free

disposal does make it impossible for the seller to allocate good 0 to buyers with x > v. In

contrast, if v < x(x̂), then there are types within the interval [x(x̂), x(x̂)] that cannot be

allocated good 0 under free disposal. This is the more challenging case, as free disposal then

affects the ironing procedure itself. Putting all of this together, we have

Ψ
FD

0 (x, x̂, v) =

Ψ0(x, x̂), x ≤ v

−∞, x > v
or Ψ

FD

0 (x, x̂, v) =


v − ψS(x), x < xFD0 (x̂, v)

zFD0 (x̂, v), x ∈ [xFD0 (x̂, v), v]

−∞, x > v

,

where the first expression applies if v ≥ x(x̂), and the second if v < x(x̂). Similarly, the

ironed virtual type function Ψ
FD

1 (x, x̂, v) is given by

Ψ
FD

1 (x, x̂, v) =

−∞, x < 1− v

Ψ1(x, x̂), x ≥ 1− v
or Ψ

FD

1 (x, x̂, v) =


v − (1− ψS(x)), x < 1− v

zFD1 (x̂, v), x ∈ [1− v, xFD1 (x̂, v)]

v − (1− ψB(x)), x > xFD1 (x̂, v)

,

where the first expression applies if v ≥ 1− x(x̂), and the second if v < 1− x(x̂).

Unified notation To streamline the derivation of the optimal mechanism, it is useful to

introduce unified notation for the lottery and ironing intervals. To that end, from this point

forward, we adhere to the convention that any function gδ is equal to g under no disposal

and to gFD under free disposal.

We let Lδ(x̂, v) denote the lottery interval with L(x̂, v) = [x(x̂), x(x̂)] under no disposal,

and LFD(x̂, v) = [xFD(x̂, v), xFD(x̂, v)] under free disposal. For ` ∈ {0, 1}, we let Rδ
`(x̂, v)

denote the rationing intervals, where R`(x̂, v) = ∅ for all ` ∈ {0, 1} under no disposal,

and RFD
0 (x̂, v) = [xFD0 (x̂, v), xFD(x̂, v)) and RFD

1 (x̂, v) = (xFD(x̂, v), xFD1 (x̂, v)] under free

disposal. This allows us to write the ironing interval associated with good ` ∈ {0, 1} as

Lδ(x̂, v)∪Rδ
`(x̂, v). Finally, let Eδ

` (x̂, v) denote the efficient intervals, with E0(x̂, v) = [0, x(x̂))

and E1(x̂, v) = (x(x̂), 1] under no disposal, and EFD
0 (x̂, v) = [0, xFD0 (x̂, v)) and EFD

1 (x̂, v) =

(xFD1 (x̂, v), 1] under free disposal. This notation not only simplifies the exposition in what
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follows, but also anticipates the connection between the ironing procedure and the structure

of the optimal selling mechanism, as well as the optimal classification of types into clock

auction categories in Section 3.2.37

4.3 Optimal mechanisms

Combining the ironing procedure from Section 4.2 with the saddle point condition from Sec-

tion 4.1, we are now in a position to characterize the optimal selling mechanism. Specifically,

we can determine the optimal selling mechanism by identifying a saddle point of the ironed

virtual surplus function

R(Q, x̂) :=

∫ 1

0

[
q0(x)Ψ

δ

0(x, x̂, v) + q1(x)Ψ
δ

1(x, x̂, v)
]
dF (x), (12)

where Ψ
δ

`(x, x̂, v) = Ψ`(x, x̂, v) if there is no disposal and Ψ
δ

`(x, x̂, v) = Ψ
FD

` (x, x̂, v) if there is

free disposal. By construction, a saddle point (Q∗, ω∗) of (12) then satisfies two conditions:

Q∗ pointwise maximizes R(·, ω∗) subject to allocative feasibility, and ω∗ is a worst-off type

under Q∗.

We first prove Proposition 1. To streamline the exposition, we assume throughout this

proof that there is no disposal. That said, with the appropriate adjustments to the notation,

the arguments go through unchanged under free disposal.38 Given any v > 0 and x̂ ∈ (0, 1),

there are three possible configurations of the ironing parameters: (i) z0(x̂, v), z1(x̂, v) ≤ 0,

(ii) z0(x̂, v), z1(x̂, v) ≥ 0 with z`(x̂, v) > 0 for some ` ∈ {0, 1}, and (iii) z`(x̂, v) > 0 and

z−`(x̂, v) < 0 for some ` ∈ {0, 1}. We show below that case (iii) is never consistent with a

saddle point and cannot arise under the optimal selling mechanism; case (i) corresponds to

running independent auctions and is an optimal configuration if and only if v ≤ vLA; and

case (ii) corresponds to a lottery-augmented auction and is optimal if and only if v > vLA.

To begin with (iii), suppose x̂ is such that z`(x̂, v) > 0 and z−`(x̂, v) < 0 for some

` ∈ {0, 1} (see Panel (a) of Figure 3 for an illustration). Then under any feasible allocation

rule Q that pointwise maximizes R(·, x̂), all buyers in the lottery interval [x(x̂), x(x̂)] are

allocated a unit of good ` with the same positive probability and are never allocated a unit

37If we do not impose the assumption that ψB and ψS are monotone, the analysis remains largely unchanged
up to this point. One can still proceed by separately ironing Ψ0(·, x̂, v) and Ψ1(·, x̂, v). However, there may
be additional ironing intervals that do not contain x̂ and instead fall within the Eδ0(x̂, v) intervals. These
extra intervals do not require introducing new categories in the first stage of the two-stage clock auction.
They must, however, be accounted for if any ascending-price auctions are required in the second stage. In
particular, the ascending prices need to “jump” over such intervals, as discussed in Ausubel (2004).

38If v < 1 and free disposal is possible, we simply restrict attention to x̂ ∈ [1− v, v] and replace z0(x̂, v),
z1(x̂, v) and [x(x̂), x(x̂)] with their free-disposal counterparts zFD0 (x̂, v), zFD1 (x̂, v) and [xFD(x̂, v), xFD(x̂, v)].
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of good −`. This implies that the worst-off type within the lottery interval is either x(x̂)

(if ` = 1) or x(x̂) (if ` = 0). Since x̂ ∈ (x(x̂), x(x̂)), this shows that the critical type is not

worst-off under any pointwise maximizing allocation rule. Hence, this configuration cannot

satisfy the saddle point condition and is never optimal.

(a) Case (iii)
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(c) Case (ii)
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Figure 3: This figure illustrates various configurations of the ironing parameters for the
uniform distribution F (x) = x. Panel (a) sets v = 0.75 and x̂ = 0.3, Panel (b) sets v = 0.25
and x̂ = 0.4 and Panel (c) sets v = 0.75 and x̂ = 0.4. These panels provide an illustration of
cases (iii), (i) and (ii) respectively.

Next, consider case (i), that is, suppose there exists x̂ such that z0(x̂, v), z1(x̂, v) ≤ 0 (see

Panel (b) of Figure 3 for an illustration). This implies that Ψ0(x, x̂, v) < 0 for x > ψ−1S (v)

and Ψ1(x, x̂, v) < 0 for x < 1 − ψ−1B (1 − v). Consequently, under the allocation rule that

pointwise maximizes R(·, x̂), the seller runs independent auctions for good 0 among buyers

with x ∈ [0, ψ−1S (v)], and for good 1 among buyers with x ∈ [1 − ψ−1B (1 − v), 1]. All buyers

with x ∈ (ψ−1S (v), 1− ψ−1B (1− v)) are worst-off, as they do not participate in either auction

and therefore receive nothing. Since x̂ ∈ (x(x̂), x(x̂)) ⊂ (ψ−1S (v), 1−ψ−1B (1−v)), x̂ is worst-off

and the saddle point condition is satisfied. Thus, if a critical type satisfying case (i) exists,

then the optimal selling mechanism involves running independent auctions. In the proof of

Lemma 4 we establish that such a critical type exists if and only if v ≤ 1/2.39

By Theorem 2, a saddle point that characterizes the optimal selling mechanism always

exists. Therefore, if there does not exist a critical type x̂ satisfying case (i), then case

(ii) must apply and the optimal mechanism is characterized by a critical type x̂ such that

z0(x̂, v), z1(x̂, v) ≥ 0 with z`(x̂, v) > 0 for some ` ∈ {0, 1} (see Panel (c) of Figure 3 for an

illustration). By construction, for any feasible allocation rule Q(·, x̂) that pointwise maxi-

mizes R(·, x̂), the corresponding interim allocation rule q is such that q0(x, x̂) is decreasing in

x and q1(x, x̂) is increasing in x. Moreover, all types in the lottery interval [x(x̂), x(x̂)] must

39Under free disposal, such a critical type exists if and only if v ≤ vLA, and we establish that vLA ∈
(1/2, vNO) in the proof of Lemma 4.
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receive the same interim allocation, which we can represent by q(x̂, x̂). If q0(x̂, x̂) > q1(x̂, x̂),

then x(x̂) is worst off within the ironing interval, and if q0(x̂, x̂) < q1(x, x̂), then x(x̂) is worst

off within the ironing interval. Consequently, we must have q0(x̂, x̂) = q1(x̂, x̂) as this is the

only possibility that is consistent with the saddle point condition and such that x̂ is worst

off. By definition, the optimal allocation rule Q(·, x̂) is then a lottery-augmented auction.

Summarizing, we have the following lemma, which immediately implies the statement of

Proposition 1.

Lemma 4. There exists a unique threshold vLA ≥ 1/2 that satisfies the following conditions.

First, if v < vLA, then there exists a critical worst-off type ω∗ such that zδ0(ω∗, v), zδ1(ω∗, v) < 0

and the optimal mechanism involves running independent auctions. Second, if v > vLA,

then there exists a unique critical worst-off type ω∗ such that zδ0(ω∗, v), zδ1(ω∗, v) ≥ 0 with

zδ` (ω
∗, v) > 0 for some ` ∈ {0, 1} and the optimal mechanism is a lottery-augmented auction.

Third, if v = vLA, then there is a unique critical worst-off type ω∗ such that zδ0(ω∗, v) =

zδ1(ω∗, v) = 0 and the designer is indifferent between running independent auctions and

using a lottery-augmented auction. Finally, we have vLA = 1/2 under no disposal, and

vLA ∈ (1/2, vNO) under free disposal.

Whenever v > vLA, Lemma 4 implies that we can restrict our search for a saddle point to

critical types that do not violate a zero lower bound constraint on the ironing parameters.

Formally, let (zδ` )
−1(·, v) denote the inverse of the function zδ` (·, v).40 When there is no

disposal, we set x̂0(v) := max{0, z−11 (0, v)} and x̂1(v) := min{1, z−10 (0, v)}, and with free

disposal, we set x̂FD0 (v) := (zFD1 )−1(0, v) and x̂FD1 (v) := (zFD0 )−1(0, v).41 Lemma 4 then

implies the following result.

Lemma 5. Whenever v > vLA, we have ω∗ ∈ [x̂δ0(v), x̂δ1(v)].

With this lemma in hand, we are now in a position to provide a detailed characterization

of the optimal mechanisms when v > vLA and a lottery-augmented auction is optimal. We

start by considering two special cases: (i) single-agent problems where K0 = K1 = N , and

(ii) problems with two agents and two goods (i.e., N = 2 and K0 = K1 = 1). We then

address the general case.

4.3.1 Single-agent problems

We now characterize the optimal lottery-augmented auction for single-agent problems such

that v > vLA and K0 = K1 = N . In this case, competition among the buyers and the

40These inverses are well-defined because, by construction, zδ0(x̂, v) is strictly decreasing in x̂ and zδ1(x̂, v)
is strictly increasing in x̂.

41As we show in the proof of Lemma 5, under free disposal, we have (zFD1 )−1(0, v) > 1 − v and
(zFD0 )−1(0, v) < v, so we don’t need to incorporate these constraints into the definitions of x̂FD0 and x̂FD1 .
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allocative feasibility constraints (AF) play no role in determining the optimal selling mecha-

nism. Consequently, for all x ∈ [0, 1], x−n ∈ [0, 1]N−1 and ` ∈ {0, 1}, the optimal allocation

rule Q∗ satisfies Q∗`(x,x−n) = q∗` (x). This property substantially simplifies the analysis. We

first introduce a particular critical type, denoted x̂δA(v) that plays an important role in the

analysis both here and beyond single-agent problems.

Definition 1. Whenever v > vLA, let x̂δA(v) ∈ (x̂δ0(v), x̂δ1(v)) denote the unique critical type

satisfying zδ0(x̂δA(v), v) = zδ1(x̂δA(v), v) > 0.

We now prove that x̂δA(v) is the critical worst-off type that characterizes the optimal

selling mechanism for single-agent problems.42 To simplify the notation, we again focus on

the case with no disposal. In this case, x̂A(v) does not vary with v and we can simply write

x̂A. However, the arguments presented here directly carry over to the case with free disposal.

We proceed by computing, for every critical x̂, the allocation rules q(·, x̂) that pointwise

maximize the designer’s ironed virtual surplus function R(·, x̂). We then check the sad-

dle point condition by determining whether the critical type x̂ is a worst-off type under a

pointwise-maximizing allocation rule q(·, x̂).

First, suppose that x̂ ∈ [x̂0(v), x̂A). This implies that z0(x̂) > z1(x̂) ≥ 0, and the unique

allocation rule that pointwise maximizes R(·, x̂) is then given by q0(x, x̂) = 1(Ψ0(x, x̂, v) ≥
Ψ1(x, x̂, v)) = 1(x ≤ x(x̂A)) and q1(x, x̂) = 1 − q0(x, x̂) (see Panel (a) of Figure 4).43 Since

x(x̂A) is the unique worst-off type under this allocation rule and x̂ ∈ (x(x̂A), x(x̂A)), no

critical type satisfying x̂ ∈ [x̂0(v), x̂A) can satisfy the saddle point condition.

Next, suppose that x̂ ∈ (x̂A, x̂1]. This implies that z1(x̂) > z0(ẑ) ≥ 0, and the unique

pointwise maximizing allocation rule then becomes q0(x, x̂) = 1(Ψ0(x, x̂, v) ≥ Ψ1(x, x̂, v)) =

1(x ≤ x(x̂A)) and q1(x, x̂) = 1− q0(x, x̂) (see Panel (c) of Figure 4). Since x(x̂A) is now the

unique worst-off type under the pointwise-maximizing allocation rule, we conclude, analo-

gously, that no critical type x̂ ∈ (x̂A, x̂1] can satisfy the saddle point condition.

Finally, suppose that x̂ = x̂A. This implies that z0(x̂) = z1(x̂) > 0 and, consequently,

there are a continuum of allocation rules that pointwise maximize R(·, x̂). In particular,

for all γ ∈ [0, 1], the allocation q0(x, x̂A) = 1(x < x(x̂A)) + γ1(x ∈ [x(x̂A), x(x̂A)]) and

q1(x, x̂A, γ) = 1− q0(x, x̂A) pointwise maximizes the seller’s ironed virtual surplus function.

If γ ∈ [0, 1/2), then the unique worst-off type under the corresponding allocation rule is

x(x̂A), which does not satisfy the saddle point condition. Similarly, if γ ∈ (1/2, 1], then the

42We establish the existence of such a critical type in the proof of Proposition 5. More generally, and as we
will see in Section 4.5, x̂δA(v) is the critical worst-off type that characterizes the optimal selling mechanism
whenever the allocative feasibility constraints are sufficiently slack. For this reason, the A subscript here
stands for “abundance.”

43Here, and throughout the remainder of this section, when we say that an allocation rule is “unique” we
mean unique up to a set of measure zero.
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(a) x̂ ∈ (x̂0, x̂A)
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(b) x̂ = x̂A

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

Ψ0(·,x

A,v) Ψ1(·,x


A,v)

q0(·,x

A) q1(·,x


A)

(c) x̂ ∈ (x̂A, x̂1)
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Figure 4: Assuming that buyer locations are uniformly distributed and v = 1, this figure
illustrates the allocation rules q0(·, x̂) (red) and q1(·, x̂) (blue) that pointwise maximizes
the ironed virtual type functions and the ironed virtual type functions Ψ0(·, x̂, v) (red) and
Ψ1(·, x̂, v) (blue) for three cases: x̂ ∈ (x̂0, x̂A), x̂ = x̂A and x̂ ∈ (x̂A, x̂1).

unique worst-off type is x(x̂A) and the saddle point condition is not satisfied. However, if

γ = 1/2, then every type in the interval [x(x̂A), x(x̂A)] is worst off, including the critical type

x̂A. Consequently, the saddle point condition is satisfied. Putting all of this together, the

unique critical worst-off type and allocation rule that satisfy the saddle point condition and

thereby parameterize the optimal selling mechanism correspond to ω∗ = x̂A and γ∗ = 1/2.

Intuitively, when the ironing parameters satisfy z0(x̂A, v) = z1(x̂A, v), the seller is indifferent

between allocating good 0 and good 1 to the types in the ironing interval [x(x̂A), x(x̂A)].

Absent any binding allocative feasibility constraints, this indifference for the designer must

hold for any types that are assigned a non-trivial lottery.

Summarizing, these arguments, which as mentioned also apply under free disposal, we

have the following proposition.

Proposition 5. Suppose v > vLA and K0 = K1 = N . The critical worst-off type is then

given by ω∗ = x̂δA(v). The optimal selling mechanism is a lottery-augmented auction with

q∗0(x) =


1, x < Lδ(x̂δA(v), v)

1
2
, x ∈ Lδ(x̂δA(v), v)

0, x > Lδ(x̂δA(v), v)

, q∗1(x) =


0, x < Lδ(x̂δA(v), v)

1
2
, x ∈ Lδ(x̂δA(v), v)

1, x > Lδ(x̂δA(v), v)

.

Applying Proposition 5, if F (x) = x, then the critical worst-off type is ω∗ = 1/2, and

the interval of types that participate in a fifty-fifty lottery is given by [1/4, 3/4]. If instead

F (x) = x2, then the critical worst-off type is approximately ω∗ ≈ 0.578, and the interval of
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types that participate in the lottery is approximately [1/3, 0.768]. Relative to the uniform

distribution, the distribution F (x) = x2 places greater probability mass on types closer to

good 1. As a result, a smaller interval of types is allocated good 1 with certainty. This

adjustment allows the seller to set a higher price for good 1, while still allocating good 1

with certainty to a larger mass of buyers (1− F (0.768) ≈ 0.411).

4.3.2 Problems with two buyers and two goods

Away from single-agent problems, competition among the buyers and allocative feasibility

become important determinants of the optimal selling mechanism. To illustrate, we consider

the case with two buyers and two goods—that is, N = 2 and K0 = K1 = 1. The example

from Section 3.1 is a special case of this environment with F (x) = x.

As in the single-agent problem, for every critical type x̂ ∈ [x̂δ0(v), x̂δ1(v)], we proceed by

computing the interim allocation rules q(·, x̂) that apply when the seller pointwise maximizes

the ironed virtual surplus R(·, x̂). We then check whether the saddle point condition is

satisfied. We begin by introducing a particular critical type, denoted x̂δS(v), that plays an

important role in the analysis.

Definition 2. Under no disposal, we let x̂S(v) ∈ (0, 1) denote the unique critical type such

that F (x(x̂S(v))) = 1 − F (x(x̂S(v))). With free disposal, we let x̂FDS (v) denote the unique

critical type satisfying F (xFD(x̂S(v), v)) = 1−F (xFD(x̂S(v), v)), whenever such a type exists.

If F (xFD(1−v, v)) > 1−F (xFD(1−v, v)), then we set x̂FDS (v) = 1−v, and if F (xFD(v, v)) <

1− F (xFD(v, v)), then we set x̂FDS (v) = v.

As we will see shortly, if x̂δS(v) ∈ [x̂δ0(v), x̂δ1(v)], then x̂δS(v) is the critical worst-off type

that characterizes the optimal selling mechanism when N = 2 and K0 = K1 = 1.44 To

simplify the notation, we again focus on the case with no disposal. For this case, x̂S(v) does

not vary with v and we can simply write x̂S. However, the arguments presented here also

apply under free disposal.

We start by taking any x̂ ∈ (x̂0(v), x̂1(v)) and deriving the corresponding interim alloca-

tion rule q(·, x̂) under pointwise maximization. If x1 ∈ [0, x(x̂)), then buyer 1 is allocated

good 0 whenever x1 < x2 and, consequently, q0(x1, x̂) = 1 − F (x1). If x1 ∈ (x(x̂), 1],

then buyer 1 is allocated good 0 whenever x1 < x2 and Ψ0(x1, x̂, v) ≥ 0 and, consequently,

q0(x1, x̂) = (1 − F (x1))1(Ψ0(x1, x̂, v) ≥ 0). If x1 ∈ [x(x̂), x(x̂)], then buyer 1 is allocated

44We formally prove the existence and uniqueness claims made in Definition 2 in the proof of Proposition 6.
More generally, and as we will see in Section 4.5, if x̂δS(v) ∈ [x̂δ0(v), x̂δ1(v)], then x̂δS(v) is the critical worst-off
type that characterizes the optimal selling mechanism whenever we have both scarcity (i.e., K0 +K1 ≤ N)
and symmetric endowments (i.e., K0 = K1). For this reason, the S subscript here stands for both “scarcity”
and “symmetry.”
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good 0 if x2 ∈ [x(x̂), 1], buyer 1 is allocated good 1 if x2 ∈ [0, x(x̂)] and goods 0 and 1 are

assigned among the two buyers uniformly at random if x2 ∈ [x(x̂), x(x̂)]. Putting all of this

together, if x1 ∈ [x(x̂), x(x̂)], then q0(x1, x̂) = (1−F (x(x̂))) + (F (x(x̂))−F (x(x̂)))/2. Simi-

larly, q1(x1, x̂) = F (x1)1(Ψ1(x1, x̂, v) ≥ 0) if x1 ∈ [0, x(x̂)), q1(x, x̂) = F (x1) if x1 ∈ (x(x̂), 1]

and q0(x1, x̂) = F (x(x̂)) + (F (x(x̂)) − F (x(x̂)))/2 if x1 ∈ [x(x̂), x(x̂)]. The critical type

x̂ ∈ (x̂0(v), x̂1(v)) is worst off and the saddle point condition is satisfied if and only if

q0(x̂, x̂) = q1(x̂, x̂). This last condition requires that 1− F (x(x̂)) = F (x(x̂)). Consequently,

if x̂S ∈ (x̂0(v), x̂1(v)), then this type satisfies the saddle point condition and x̂S is the critical

worst-off type that characterizes the optimal mechanism. Figure 5 provides an illustration

of this result.

(a) x̂ ∈ (x̂0, x̂S)
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(b) x̂ = x̂S = 1/2
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(c) x̂ ∈ (x̂S , x̂1)
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Figure 5: Assuming that N = 2, K0 = K = 1, F (x) = x and v = 1, this figure illustrates the
allocation rules q0(·, x̂) (red) and q1(·, x̂) (blue) that pointwise maximizes the ironed virtual
type functions Ψ0(·, x̂) (red) and Ψ1(·, x̂, v) (blue) for three cases: x̂ ∈ (x̂0, x̂S), x̂ = x̂S = 1/2
and x̂ ∈ (x̂S, x̂1).

Next, we consider the case where x̂ = x̂0(v). By Theorem 2, this critical type can only

satisfy the saddle point condition if x̂ = x̂0(v) > 0 and z1(x̂, v) = 0. The derivation of

the pointwise maximizing allocation rule q(·, x̂) then proceeds very similarly to the previous

case. However, when both buyers report a type in the lottery interval [x(x̂), x(x̂)], the

seller is now indifferent between using a lottery to allocate both good 0 and good 1 to the

buyers and using a lottery to just allocate good 0 to the buyers. Consequently, for type

realizations like these, the pointwise maximizing ex post allocation rule is not unique and,

for any γ ∈ [0, 1], the interim allocations q0(x̂, x̂) = (1 − F (x(x̂))) + (F (x(x̂)) − F (x(x̂))/2

and q0(x̂, x̂) = (1 − F (x(x̂))) + γ(F (x(x̂)) − F (x(x̂))/2 are both consistent with pointwise

maximization. The saddle point condition is then satisfied for this critical type if and only if

there exists γ ∈ [0, 1] such that q0(x̂, x̂) = (1−F (x(x̂)))+(F (x(x̂))−F (x(x̂))/2 = q0(x̂, x̂) =

(1 − F (x(x̂))) + γ(F (x(x̂)) − F (x(x̂))/2. This condition holds and x̂ = x̂0(v) is the critical
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worst-off type if and only if x̂S ≤ x̂0(v). By a symmetric argument, we also have that

x̂ = x̂1(v) is the critical worst-off type that characterizes the optimal selling mechanism if

and only if x̂S ≥ x̂1(v).

Summarizing, we have the following proposition.

Proposition 6. Suppose that N = 2 and K0 = K1 = 1. Then ω∗ = x̂δS(v) if x̂δS(v) ∈
[x̂δ0(v), x̂δ1(v)], ω∗ = x̂δ0(v) if x̂δS(v) < x̂δ0(v) and ω∗ = x̂δ1(v) if x̂δS(v) > x̂δ1(v).

4.3.3 General analysis

To derive the optimal mechanism in general, one can directly apply the procedure utilized

in sections 4.3.1 and 4.3.2. In particular, for every critical type x̂ ∈ [x̂δ0(v), x̂δ1(v)], one can

compute the ex post allocation rules Q(·, x̂) that pointwise maximize the ironed virtual

surplus function R(Q, x̂) defined in (12). From there, the corresponding interim allocation

rules q(·, x̂) can be backed out. One is then left to check the saddle point condition (i.e.,

whether the critical type is also worst-off under one of the interim allocation rules it gen-

erates under pointwise maximization). Whenever x̂ /∈ {x̂δ0(v), x̂δA(v), x̂δ1(v))}, this procedure

is straightforward, as there is a unique ex post allocation rule Q(·, x̂) that pointwise maxi-

mizes R(Q, x̂). However, if x̂ ∈ {x̂δ0(v), x̂δA(v), x̂δ1(v)}, then there is not necessarily a unique

pointwise-maximizing ex post allocation rule.

Suppose first that x̂ = x̂δA(v). This implies that zδ0(x̂, v) = zδ1(x̂, v) > 0. Pointwise

maximization then uniquely pins down the ex post allocation rule for all types outside the

ironing interval Lδ(x̂, v). However, whenever K0+K1 > N , there is a continuum of pointwise

maximizing ex post allocations for buyers with types within the ironing interval Lδ(x̂, v)

because the designer is indifferent between allocating good 0 and good 1 to these types.

Nevertheless, the full set of ex post allocation rules that pointwise maximize (12) can be

represented by taking convex combinations of two extremal allocations for types in the lottery

interval: One where the seller prioritizes allocating good 0 over good 1 to these buyers and one

where the seller prioritizes allocating good 1 over good 0 to these buyers. The corresponding

extremal ex post allocation rule is obtained by computing the one-sided limits Q(·, x̂+)

and Q(·, x̂−). The full set of pointwise maximizing ex post allocation rules can then be

represented by taking, for any γ ∈ [0, 1], the convex combination γQ(·, x̂+)+(1−γ)Q(·, x̂−).45

Next, suppose that x̂ = x̂δ`(v) for some ` ∈ {0, 1}. If x̂δ`(v) ∈ {0, 1}, then Theorem

2 shows that x̂ cannot satisfy the saddle point condition. So suppose that x̂δ`(v) /∈ {0, 1},
which implies that zδ−`(x̂, v) = 0. Consequently, the designer is indifferent between allocating

45The designer can implement this ex post allocation rule without violating the feasibility constraints
by randomizing over the two extremal ex post allocation rules after the buyers have reported their types,
implementing one with probability γ and the other with probability 1− γ.
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good −` to types in the ironing interval Lδ(x̂, v) ∪ Rδ
−`(x̂, v) and there are a continuum of

pointwise maximizing ex post allocation rules. However, we can again represent this set by

taking convex combinations of two extremal allocations for types in the ironing interval: One,

Q(·, x̂−), where the seller allocates good −` to buyers in Lδ(x̂, v) ∪ Rδ
−`(x̂, v) whenever this

is feasible under pointwise maximization, and one, Q(·, x̂+), where the seller never allocates

good −` to these types.46 Once again, we can then represent the full set of pointwise

maximizing ex post allocation rules by taking, for any γ ∈ [0, 1], the convex combination

γQ(·, x̂+) + (1− γ)Q(·, x̂−).

Theorem 3. Suppose that v > vLA and take x̂ ∈ [0, 1] under no disposal and x̂ ∈ [1− v, v]

under free disposal. If x̂ /∈ {x̂δ0(v), x̂δA(v), x̂δ1(v)}, then (up to a set of measure zero) there

exists a unique ex post allocation rule Q(·, x̂) and corresponding interim allocation rule q(·, x̂)

that pointwise maximizes the ironed virtual surplus R(·, x̂). Taking x̂ ∈ [x̂δ0(v), x̂δ1(v)] and

constructing the correspondence

∆q(x̂) =



{q0(x̂, x̂)− γq1(x̂, x̂) : γ ∈ [0, 1]}, x̂ = x̂δ0(v) > 0

{q0(x̂, x̂)− q1(x̂, x̂)}, x̂ ∈ (x̂δ0(v), x̂δA(v))

{γ(q0(x̂, x̂
+)− q1(x̂, x̂+)) + (1− γ)(q0(x̂, x̂

−)− q1(x̂, x̂−)) : γ ∈ [0, 1]}, x̂ = x̂δA(v)

{q0(x̂, x̂)− q1(x̂, x̂)}, x̂ ∈ (x̂δA(v), x̂δ1(v))

{(1− γ)q0(x̂, x̂)− q1(x̂, x̂) : γ ∈ [0, 1]}, x̂ = x̂δ1(v) < 1

,

the critical worst-off type that parameterizes the optimal mechanism is the unique type ω∗ ∈
[x̂δ0(v), x̂δ1(v)] that satisfies 0 ∈ ∆q(ω∗). If ω∗ /∈ {x̂δ0(v), x̂δA(v), x̂δ1(v))}, then the optimal ex

post allocation rule is given by Q(·, ω∗). If ω∗ ∈ {x̂δ0(v), x̂δA(v), x̂δ1(v)}, then letting γ∗ denote

the unique index of the set ∆q(ω∗) that corresponds to the element 0, the optimal ex post

allocation rule is given by γ∗Q(·, (ω∗)+) + (1− γ∗)Q(·, (ω∗)−).

Whenever v > vLA, we can use Theorem 3 to compute the critical worst-off type ω∗ and,

if applicable, the lottery index γ∗ that parameterize the optimal lottery-augmented auction.

The optimal ex post allocation rule Q∗, which pointwise maximizes R(·, ω∗), takes exactly

the form described in Section 3.2.1. What Section 3.2.1 did not specify is how the intervals

that characterize the optimal mechanism are derived, or the precise lotteries associated with

each. This gap is filled by Theorem 3. It shows how the optimal lottery interval Lδ(ω∗, v)—

as well as the corresponding ex post lotteries offered to any types within this interval—can

be computed. Under free disposal, this theorem also shows how any rationing intervals

46The limit Q(·, x̂+) is well-defined if, for any x̂ ∈ [0, 1] \ {x̂0(v), x̂A, x̂1(v)} under no disposal and any
x̂ ∈ [1 − v, v] \ {x̂FD0 (v), x̂FDA (v), x̂FD1 (v)} under free disposal, we let Q(·, x̂) denote the unique ex post
allocation rule that pointwise maximizes R(Q, x̂).
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RFD
0 (ω∗, v) and RFD

1 (ω∗, v) (and their corresponding ex post lotteries) can be computed.

Coarse categories in the two-stage clock auction In Section 3.2.2 we described a

two-stage clock auction that implements the optimal mechanism. In the first stage of this

auction, bidders are asked to self-select into one of multiple coarse categories (or bins). We

are now in a position to be more precise about the number and structure of these categories.

Consider first the case with no disposal. Here, all possible clock auction categories

can be represented by the intervals E0(ω
∗, v) = [0, x(ω∗)), L(ω∗, v) = [x(ω∗), x(ω∗)] and

E1(ω
∗, v) = (x(ω∗), 1]. If x(ω∗) > 0 and x(ω∗) < 1, then all three of these categories are

non-empty and are offered by the designer in the first stage of the auction. However, if

x(ω∗) = 0, then only L and E1 are offered, and if x(ω∗) = 1, then only E0 and L are offered.

Under free disposal, the possible clock auction categories are EFD
0 (ω∗, v) = [0, xFD0 (ω∗, v)),

R0(ω
∗, v) = [xFD0 (ω∗, v), xFD(ω∗, v)), LFD(ω∗, v) = [xFD(ω∗, v), xFD(ω∗, v)], R1(ω

∗, v) =

(xFD(ω∗, v), xFD1 (ω∗, v)] and EFD
1 (ω∗, v) = (xFD1 (ω∗, v), 1]. As discussed, under free disposal

we always have xFD0 (ω∗, v) > 0 and xFD1 (ω∗, v) < 1. This implies that the categories EFD
0 ,

LFD and EFD
1 are non-empty and are always offered. In contrast, the rationing intervals are

not necessarily offered. In particular, RFD
0 is offered if and only if xFD0 (ω∗, v) < xFD(ω∗, v),

and RFD
1 is offered if and only if xFD1 (ω∗, v) > xFD(ω∗, v).

Summarizing this discussion, we have the following proposition.

Proposition 7. Suppose v > vLA and consider the coarse categories offered in the first stage

of the two-stage clock auction. With no disposal, the number of categories offered is either

three (E0 ,L and E1) or two (E0 and L or L and E1). With free disposal, the categories

EFD
0 , LFD and EFD

1 are always offered. In addition, the rationing categories R0 and/or R1

may be offered, implying that the total number of categories is three, four or five.

Examples under no disposal For any given specification of the model, we can employ

Theorem 3 to compute the optimal mechanism. Figures 6 and 7 illustrate a variety of

examples.

Figure 6 illustrates the correspondence ∆q from Theorem 3 for a series of markets with

N = 10, K0 + K1 = 10, F (x) = x, and no disposal. Each panel corresponds to a different

value of v, and plots ∆q(x̂) for various values of K0. Since the total supply satisfies K0+K1 =

N , there is always a unique pointwise-maximizing ex post allocation rule at x̂ = x̂A. However,

as Panels (b) and (c) show, when v = 3/2 and v = 1, the critical types x̂0(v) and x̂1(v) lie

strictly within the interior of the type space. As a result, the correspondence ∆q exhibits

vertical segments at these boundary points, reflecting the fact that a continuum of pointwise-

maximizing allocation rules exists when x̂ ∈ {x̂0(v), x̂1(v)}.
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(a) F (x) = x, v = 2
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(b) F (x) = x, v = 3/2
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(c) F (x) = x, v = 1
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Figure 6: This figure illustrate the correspondence ∆q from Theorem 3 for a series of markets
with N = 10, K0 + K1 = 10, F (x) = x and no disposal. Panel (a) set v = 2, Panel (b) set
v = 3/2 and Panel (c) sets v = 1.

The zero of the correspondence ∆q determines the critical worst-off type ω∗ (and, if

ω∗ ∈ {x̂0(v), x̂1(v)}, the randomization parameter γ∗) and thereby characterizes the optimal

selling mechanism. Across the panels, we observe a clear comparative static: as K0 decreases

and K1 increases, the critical worst-off type ω∗ decreases, pushing the lottery interval toward

good 0 (i.e., the good that has become relatively more scarce). Interestingly, and as panels

(a) and (b) illustrate, when v is sufficiently large and good 0 is sufficiently scarce, ω∗ < 1/4

and x(ω∗, v) = 0. Under the two-stage clock auction implementation, this means the designer

only offers two coarse categories in the first stage (L and E1), and never runs an ascending-

price auction for good 0 in the second stage. Although it may seem counterintuitive to

forgo the possibility of auctioning good 0—after all, the designer could increase the revenue

directly associated with good 0 by setting a starting price close to v for this good—the

optimal mechanism instead uses the limited supply of good 0 to support offering a fifty-fifty

lottery to more types at the interim stage. This expands the lottery interval and raises the

starting price for good 1, thereby increasing the revenue directly generated by the sale of

this good. Intuitively, when good 0 is sufficiently scarce, the designer derives relatively more

revenue from good 1. It is therefore more profitable to use the scarce supply of good 0 to

raise the starting price of good 1 than it is to auction good 0 directly. Similarly, when v

is sufficiently large and good 1 is sufficiently scarce, ω∗ > 3/4 and x(ω∗, v) = 1. In this

case, the designer only offers the categories E0 and L in the first stage of the two-stage clock

auction, and never runs an ascending-price auction for good 1 in the second stage.

Figure 7 also illustrates the correspondence ∆q for a variety of cases. Panels (a) and

(b) set F (x) = x, v = 2, N = 10, and assume no disposal. Panel (a) considers symmetric
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(a) F (x) = x, v = 2
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(b) F (x) = x, v = 2

0.2 0.4 0.6 0.8 1.0
x


1.0

0.5

0.5

1.0

Δq

K0=10 K0=8 K0=7

K0=6 K0=5 K0=4

K0=3 K0=2 K0=1

(c) F (x) = x2, v = 2
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Figure 7: Panels (a) and (b) set F (x) = x, v = 2, N = 10 and assume no disposal. Panel
(a) illustrates the correspondence ∆q for a series of markets with symmetric endowments
such that K0 = K1 = K, and Panel (b) considers a series of markets involving asymmetric
endowments with K1 = 10. Panel (c) sets F (x) = x2, v = 2 and N = 10 and considers the
same set of symmetric endowments as Panel (a).

endowments, with K0 = K1 = K, while Panel (b) fixes K1 = 10 and varies K0 to illustrate

some markets with asymmetric endowments. Panel (c) considers the same set of symmetric

endowments as Panel (a), but with F (x) = x2. As each of the panels illustrates, whenever

K0 + K1 ≤ N , there is a unique pointwise-maximizing ex post allocation rule at x̂ = x̂A.

However, if K0 + K1 > N , then there is a continuum of pointwise-maximizing allocation

rules at x̂ = x̂A and ∆q exhibits a vertical segment at this point. If ω∗ = x̂A, then the zero

of ∆q also pins down the associated randomization parameter γ∗.

Figure 7 illustrates a variety of comparative statics. As we showed in Section 4.3.1, ω∗ =

x̂A always holds for single-agent problems. More generally, and as Figure 7 shows, we have

ω∗ = x̂A whenever the feasibility constraints are sufficiently slack. Whenever K0 +K1 ≤ N

and the endowments are symmetric, the critical worst-off type also coincides with x̂S(v).

In Panel (c), which assumes F (x) = x2 and v = 2, we see that ω∗ = x̂S ≈ 0.700 when

K ≤ bN/2c, and that ω∗ monotonically converges from x̂S to x̂A ≈ 0.578 as K increases

from 1 to N .47 Together, the panels of Figure 7 illustrate a more general phenomenon: As K0

and K1 increase, the critical worst-off type ω∗ typically converges to x̂A well before we reach

a single-agent problem with K0 = K1 = N . Our comparative statics results in Section 4.5

provide a precise characterization of the rate and nature of this convergence, as well as the

other comparative statics highlighted throughout this discussion.

47For the uniform distribution, this convergence is trivial since x̂S(v) = x̂A = 1/2.
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4.4 Ex post individual rationality and dominant strategy prices

In this section, we derive the prices that implement the optimal allocation rule in dominant

strategies. As we will see, this requires identifying the ex post worst-off types in our Hotelling

environment. This is non-trivial because, in this setting, ex post and interim individual

rationality are not generally equivalent.

We begin with two benchmark cases in which identifying the worst-off types is straight-

forward because there exist types that are ex post worst off regardless of the other buyers’

reports. Consequently, these types are also interim worst off. First, if v ≤ vLA, then inde-

pendent auctions are optimal. The set of interim worst-off types is [v− r∗0(v), r∗1(v)− v+ 1],

and the set of ex post worst-off types is [min{v − r∗0(v), x−n(K0)
},max{r∗1(v) − v + 1, x−n[K1]

}],
where x−n(K0)

and x−n[K1]
are the K0-smallest and K1-largest elements of the vector x−n, respec-

tively. As is well known, the dominant strategy prices buyer n faces given x−n ∈ [0, 1]N−1

are p0(x−n) = max{v − x−n(K0)
, r∗0(v)} for good 0 and p1(x−n) = max{v − (1 − x−n[K1]

), r∗1(v)}
for good 1. Second, in single-agent problems there is no distinction between (IC) and (DIC),

or between (IR) and (EIR), because there is no interaction between the agents. Whenever

v > vLA, the set of worst-off types is given by the lottery interval L = [x, x] of the optimal

mechanism, and the optimal mechanism can be implemented in dominant strategies by offer-

ing each buyer n ∈ N the prices p0(x−n) = v−x, pL(x−n) = v−1/2 and p1(x−n) = v−(1−x),

where pL(x−n) is the price for a fifty-fifty lottery over both goods, and p`(x−n) is the price

required to secure a unit of good ` ∈ {0, 1}. Note that p0(x−n), pL(x−n) and p1(x−n) consti-

tute a menu of prices offered to each buyer n, with each price corresponding to one particular

allocation—good 0, the lottery, or good 1. In single-agent problems, p0(x−n), pL(x−n) and

p1(x−n) do not vary with x−n.

We now derive the menu of dominant strategy prices for all remaining cases, which in-

volve non-trivial competition among the buyers. To simplify notation, we let Q`(xn,x−n)

denote the ex post probability that buyer n is allocated good ` ∈ {0, 1} under the optimal

mechanism, conditional on buyer n reporting xn ∈ [0, 1] and the other buyers reporting

x−n ∈ [0, 1]N−1. That is, we drop the “∗” superscript and interpret ex post to mean after all

reports are submitted but before any randomization within the mechanism is realized. Be-

cause (Q0(xn,x−n), Q1(xn,x−n)) pointwise maximizes the ironed virtual objection function

R(·, ω∗), it follows that Q0(xn,x−n) is decreasing in xn and Q1(xn,x−n) is increasing in xn.

Ex post worst-off types Let ΩEX(x−n) denote the set of ex post worst-off types of buyer

n, given x−n, under the optimal allocation rule. This set can be computed analogously to

Ω(Q) in Lemma 1, replacing q`(x) with Q`(xn,x−n) for each ` ∈ {0, 1}. The structure of the

optimal allocation rule implies that if there exists xn such that Q0(xn,x−n) = Q1(xn,x−n),
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then there is an interval of types, denoted [ωEX(x−n), ωEX(x−n)], on which this equality

holds. All types within the interval [ωEX(x−n), ωEX(x−n)] are then ex post worst off. Oth-

erwise, we have Q0(xn,x−n) 6= Q1(xn,x−n) for all xn, and ΩEX(x−n) is a singleton, denoted

ωEX(x−n). In this case, if Q1(xn,x−n) − Q0(xn,x−n) > 0 for some xn, then ωEX(x−n) =

infxn∈[0,1]{Q1(xn,x−n)−Q0(xn,x−n) > 0}, and if instead Q1(xn,x−n)−Q0(xn,x−n) < 0 for

some xn, then ωEX(x−n) = supxn∈[0,1]{Q1(xn,x−n)−Q0(xn,x−n) < 0}.
We denote by

WEX :=
⋂

x−n∈[0,1]N−1

ΩEX(x−n)

the (possibly empty) set of types that are always ex post worst off under the optimal alloca-

tion rule. As previously noted, when v ≤ vLA and independent auctions are optimal, the set

of interim worst-off types is [v−r∗0(v), r∗1(v)−v+1] and when v > vLA and lottery-augmented

auctions are optimal, the set of interim worst-off types is Lδ(ω∗, v). The following lemma

establishes properties of WEX .

Lemma 6. If v ≤ vLA, then WEX = [v−r∗0(v), r∗1(v)−v+1], and if v > vLA and K0 = K1 =

N (i.e., we have a single-agent problem), then WEX = Lδ(ω∗, v). Otherwise, WEX = ∅.

As we will see shortly, if WEX = ∅, then expected revenue subject to ex post individual

rationality is strictly smaller than expected revenue subject to interim individual rationality.

Dominant strategy prices We now derive the dominant strategy prices that satisfy

(EIR) with equality for the ex post worst-off types. These prices are conceptually simple

and anchored by the consumption utility of the worst-off type(s), although the details are

somewhat intricate. The simplest case arises when Q`(xn,x−n) ∈ {0, 1} for all xn ∈ [0, 1]

and ` ∈ {0, 1}. In this case, if xn ≤ ωEX(x−n), then buyer n is charged v − ωEX(x−n)

and allocated good 0 with certainty; if xn > ωEX(x−n), then buyer n is charged v − (1 −
ωEX(x−n)) and allocated good 1 with certainty; and if x ∈ (ωEX(x−n), ωEX(x−n)), then

buyer n receives and pays nothing. Because the price charged varies with xn only through

changes in allocation, the seller can equivalently offer buyer n a menu of prices p0(x−n) =

v− ωEX(x−n) and p1(x−n) = v− (1− ωEX(x−n)) for goods 0 and 1, respectively, and allow

n to choose which good—if any—to purchase.

In more complex cases, the allocation rule Q`(xn,x−n) can take on up to five distinct

values as a function of xn, depending on x−n, N , K0, K1, v, F , and whether there is free

disposal or no disposal. This corresponds to the classification of buyer types into up to five

categories in the first stage of the clock auction implementation, as described in Proposition

7. To capture these possibilities, we introduce a set of four thresholds Y := {y
0
, y, y, y1}
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satisfying 0 ≤ y
0
≤ y,≤ y ≤ y1 ≤ 1 with either 0 < y

0
or y1 < 1. These thresholds delineate

regions in which the allocation rule takes qualitatively distinct forms:

Q0(xn,x−n) = 1 and Q1(xn,x−n) = 0 for xn ∈ [0, y
0
);

Q0(xn,x−n) ∈ (0, 1) and Q1(xn,x−n) = 0 for xn ∈ [y
0
, y);

Q0(xn,x−n), Q1(xn,x−n) ∈ (0, 1) for xn ∈ [y, y];

Q0(xn,x−n) = 0, Q1(xn,x−n) ∈ (0, 1) for xn ∈ (y, y1]; and

Q0(xn,x−n) = 0 and Q1(xn,x−n) = 1 for xn ∈ (y1, 1].

Moreover, the endpoints of the interval of ex post worst-off types must lie in the set Y .

That is, ωEX(x−n), ωEX(x−n) ∈ Y and, in the singleton case, ωEX = ωEX = ωEX ∈ Y . To

simplify the notation, we also define QR
0 (x−n) := Q0(xn,x−n) for xn ∈ [y

0
, y), QL

` (x−n) :=

Q`(xn,x−n) for xn ∈ [y, y], and QR
1 (x−n) := Q1(xn,x−n) for xn ∈ (y, y1]. Because the ex

post allocations are constant over the intervals delineated by the set Y , so too will be the

corresponding dominant strategy prices, which we denote by p0(x−n) on [0, y
0
), pR0 (x−n) on

[y
0
, y), pL(x−n) on [y, y], pR1 (x−n) on (y, y1] and p1(x−n) on (y1, 1].

Characterizing the menu of dominant strategy prices for an arbitrary buyer n is now

relatively straightforward. As in the case where Q`(xn,x−n) ∈ {0, 1} for all xn ∈ [0, 1]

and ` ∈ {0, 1}, we adhere to the convention of not specifying prices for allocations that

are not offered. The dominant strategy prices are still “anchored” by the consumption

utility of the ex post worst-off type(s) and determined by the utility increments from the

superior allocations, evaluated at the marginal types to whom these accrue. In other words,

the dominant strategy prices in this model of horizontal differentiation are determined in a

manner familiar from standard models of vertical differentiation such as Mussa and Rosen

(1978), once the starting point for these prices—the consumption utility of the ex post worst-

off type(s)—is determined. Consequently, we refer to these prices as the Mussa-Rosen prices

anchored at the relevant worst-off types.

Suppose first that all four thresholds are distinct and such that 0 < y
0

and y1 < 1. Then

buyer n is offered five different prices. If QL
0 (x−n) < QL

1 (x−n) holds, then ωEX(x−n) = y

and the lottery price is pL(x−n) = (v − y)QL
0 (x−n). DIC for xn ∈ [y

0
, y) implies that

pR0 (x−n) = pL(x−n) + (v− y)(QR
0 (x−n)−QL

0 (x−n)) = (v− y)QR
0 (x−n) while DIC for xn < y

0

implies p0(x−n) = pR0 (x−n) + (v− y
0
)(1−QR

0 (x−n)) = v− y
0
− (y− y

0
)QR

0 (x−n). Similarly,

we have pR1 (x−n) = pL(x−n) + (v− (1− y))(QR
1 (x−n)−QL

1 (x−n)) and p1(x−n) = pR1 (x−n) +

(v − (1 − y1))(1 − QR
1 (x−n)). Conversely, for QL

0 (x−n) > QL
1 (x−n), we have ωEX(x−n) = y

and pL(x−n) = (v − (1 − y))QL
1 (x−n), pR0 (x−n) = pL(x−n) + (v − y)(QR

0 (x−n) − QL
0 (x−n)),

p0(x−n) = pR0 (x−n) + (v− y
0
)(1−QR

0 (x−n)), pR1 (x−n) = pL(x−n) + (v− (1− y))(QR
1 (x−n)−

QL
1 (x−n)) = (v− (1− y))QR

1 (x−n) and p1(x−n) = pR1 (x−n) + (v− (1− y1))(1−QR
1 (x−n)) =

v − (1 − y1) − (y1 − y)QR
1 (x−n). Finally, if QL

0 (x−n) = QL
1 (x−n), then ΩEX(x−n) = [y, y]
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and pL(x−n) = (QL
0 (x−n) + QL

1 (x−n))(v − 1/2), with all other prices determined as above,

substituting this last expression for pL.

When fewer than five prices are offered, then the Mussa-Rosen prices are determined in

a similar fashion. For example, if y
0

= y, then p0(x−n) = pL(x−n) + (v − y)QL
0 (x−n), and if

y = y1, then p1(x−n) = pL(x−n) + (v− (1− y))QL
1 (x−n), with pL(x−n) determined as above.

Finally, if y
0

= 0 (y1 = 1), then the allocation Q0(xn,x−n) = 1 (Q1(xn,x−n) = 1) is not

offered to n, and hence p0(x−n) (p1(x−n)) is not on n’s menu.

Because these dominant strategy prices implement the allocation rule of the optimal

mechanism subject to (EIR), the payoff equivalence theorem implies that, up to a constant,

the interim expected payoff of every type x is the same as this type’s interim expected payoff

subject to (IC) (or (DIC)) and (IR). However, whenever WEX = ∅, any interim worst-off

type is not ex post worst off with positive probability and, consequently, nets a positive

expected payoff. Thus, wheneverWEX = ∅, the aforementioned constant is strictly positive.

In turn, this implies that expected revenue subject to (DIC) and (EIR) is strictly smaller

than expected revenue subject to (DIC) and (IR). In contrast, when WEX 6= ∅, any interim

worst-off type is also ex post worst off, in which case the aforementioned constant is zero and

the expected revenues are the same. The wedge between expected revenue under ex post

versus interim individual rationality that arises whenever WEX = ∅ contrasts with standard

mechanism design settings, where WEX always contains the interim worst-off types.48 This

wedge is also absent from the single-agent countervailing incentive problems that much of

that literature has focused on.

The following proposition summarizes all of this.

Proposition 8. The menu of dominant strategy prices is given by the Mussa-Rosen prices

anchored at the relevant worst-off types. Under (DIC), expected revenue subject to (EIR) is

strictly smaller than that subject to (IR) if and only ifWEX = ∅; otherwise, the two coincide.

We now relate the menu of dominant strategy prices in Proposition 8 to the two-stage

clock auction implementation. Given x, buyer n’s allocation is (Q0(xn,x−n), Q1(xn,x−n)),

which directly determines the dominant strategy price charged to buyer n at the type profile

x. It is then straightforward to verify that the two-stage clock auction implements these

prices and each buyer n pays the corresponding price. An important feature of these prices

is that the ex post allocation rule depends only on the number of bidders inside the lottery

interval L and any rationing intervals R`, and not on any other details of their reports.

Therefore, it suffices to only elicit whether bidders’ types are inside some L or R` interval,

48See, for example, Manelli and Vincent (2011) and Gershkov et al. (2013) for equivalence results pertaining
to IC–IR and DIC–EIR implementation in settings with independent private values and no countervailing
incentives.
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and this is precisely what the first stage of the clock auction achieves. Finally, information

about the marginal winner in any second-stage ascending-price auctions is required only if,

for some buyer n and y ∈ (0, 1), we have Q0(xnx−n) = 1 for all xn ≤ y and Q1(xnx−n) = 1

for all xn > y. In this case, ωEX(x−n) = y and buyer n pays v − y if xn ≤ y and v − (1− y)

if xn > 0. This situation never arises when N > K0 + K1 or when free disposal binds

and affects the ironing procedure associated with the optimal mechanism. In contrast, when

N ≤ K0+K1 and either v > x or v < x, there always exist type profiles such that the privacy

of the marginal winner of an ascending-price auction must be violated. This is the sense in

which the two-stage clock auction elicits the minimal information required to implement the

optimal allocation rule in dominant strategies.

4.5 Comparative statics

We conclude the analysis by examining how the starting prices of the two-stage clock auction

that implements the optimal mechanism vary with K0 and K1 when v > vLA. Notwithstand-

ing the complexity of the underlying mechanism, these comparative statics are intuitive in

many ways, while subtle and perhaps surprising in others.

Fixing F and N , we make the dependence of the starting prices on K0 and K1 explicit

by letting sδ`(K, v), where K = (K0, K1), denote the starting price for good ` ∈ {0, 1}. We

set sδ`(K, v) = v for any parameterizations under free disposal where good ` is not offered

as part of an ascending-price auction (that is, we set sδ0(K, v) = v when x(ω∗) = 0 and

sδ0(K, v) = v when x(ω∗) = 1). More generally, we let sδ`(v) denote the upper bound on

the starting price of good ` ∈ {0, 1}.49 We begin with the basic observation that sδ0(K, v)

and sδ1(K, v) must vary in opposite directions in the sense that if sδ`(K, v) < sδ`(K
′, v), then

this immediately implies that sδ−`(K, v) ≥ sδ−`(K
′, v).50 This follows from the fact that the

bounds on the interval Rδ
0(ω

∗, v) ∪ Lδ(ω∗, v) ∪ Rδ
1(ω

∗, v) that determine the starting prices

of the ascending-price auctions vary co-monotonically in the critical type and, consequently,

vary co-monotonically in the problem parameters. As we will see shortly, the location of

the ironing interval depends on how tight the allocative feasibility constraints are. For

this reason, single-agent problems where these constraints are slack provide an important

benchmark. We let pδ`(v) denote the price the seller charges for good ` ∈ {0, 1} under

49Under no disposal and if v ≥ 1 + max {1/f(0), 1/f(1)}, then we have sδ`(v) = v. More generally, the
definition of x̂`(v), footnote 41 and Lemma 5 together imply that under no disposal, we have s0(v) =
min{v, v − x(x̂0(v))} and s1(v) = min{v, v − (1 − x(x̂1(v))} and under free disposal, we have sFD0 (v) =
v − xFD(x̂FD0 (v), v) and sFD1 (v) = v − (1− xFD(x̂FD1 (v), v)).

50The second inequality is not strict because the starting price for good −` may be constant if we are at
the upper bound sδ−`(v).
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single-agent problems with K0 = K1 = N .51

A first simple comparative statics result is that sδ`(K, v) decreases in K`. That is, for K

and K ′ = (K` + 1, K−`), we have sδ`(K
′, v) ≤ sδ`(K, v). The underlying logic is simple—as

good 0 (good 1) becomes less scarce, the ironing interval moves, weakly, to the right (left).

This is intuitive insofar as increasing the supply of a good is naturally expected to decrease

its starting price. Yet, it contrasts with the reserve prices in standard optimal auctions,

which do not depend on the number of units for sale. Thus, of particular interest are the

conditions under which the starting prices strictly vary with K, an issue we address next.

Whenever K0 +K1 ≥ 0, the feasibility constraint for one good ` ∈ {0, 1} determines the

clock auction starting prices, even if the constraint for good −` also binds. In such cases,

increasing the supply of good ` causes the starting prices sδ(K, v) to converge monotoni-

cally to the seller’s preferred starting prices pδ(v) (i.e., those that apply under single-agent

problems where there are no binding feasibility constraints). This convergence often occurs

well before K` = N , and Proposition 9 provides a sharp characterization of the rate and

nature of this convergence. Increasing the supply of good −` (i.e., the good whose feasibility

constraint does not determine the starting prices) has no effect on the starting prices. In

contrast, when K0 + K1 < N , both feasibility constraints bind and jointly determine the

starting prices. As a result, increasing the supply of either good changes these prices. In

this case, we can also generalize our result from Section 4.3.2 and we let pδ,S` (v) denote the

clock auction starting prices under symmetric endowments such that K0 = K1.
52

The following proposition formally establishes these comparative statics.

Proposition 9. Suppose that v > vLA and K0+K1 ≥ N . Then there exists KA = (KA
0 , K

A
1 )

satisfying KA
0 + KA

1 ∈ {N,N + 1} such that (sδ0(K, v), sδ1(K, v)) = (pδ0(v), pδ1(v)) for all

` ∈ {0, 1} if and only if K ≥ KA. If K` < KA
` for some ` ∈ {0, 1}, then sδ`(K`, K−`, v) ≥

sδ`(K` + 1, K−`, v) ≥ pδ0(v) and sδ`(K`, K−`, v) = sδ`(K`, K−` + 1, v), where the first of these

weak inequalities is strict provided sδ`(K`, K−`, v) < sδ`(v).

Next, suppose that v > vLA and K0 +K1 < N . Then for all ` ∈ {0, 1}, sδ`(K`, K−`, v) ≥
sδ`(K` + 1, K−`, v), where the inequality is strict provided sδ`(K`, K−`, v) < sδ`(v). If K0 =

K1 = K, where K ≤ bN
2
c, then sδ`(K,K, v) = pδ,S` (v).

Figure 8 illustrates the comparative statics in Proposition 9. A notable feature in each

panel is the rectangle of parameterizations whose lower-left corner is KA, where the allocative

51By Proposition 5, under no disposal the lottery interval is [x(x̂A), x(x̂A)] and we have p0(v) = v−x(x̂A)
and p1(v) = v − (1 − x(x̂A)). Under free disposal the lottery interval is [xFD(x̂FDA (v), v), xFD(x̂FDA (v), v))]
and we have pFD0 (v) = v − xFD(x̂FDA (v), v) and pFD1 (v) = v − (1− xFD(x̂FDA (v), v)).

52Utilizing Proposition 6, we define x̃δS(v) = min{max{x̂δS(v), x̂δ0(v)}, x̂δ1(v)}. The clock auction starting
prices are then given by pS0 (v) = v − x(x̃S(v)) and pS1 (v) = v − (1 − x(x̃S(v))) under no disposal and

pFD,S0 (v) = v − xFD(x̃FDS (v), v) and pFD,S1 (v) = v − (1− xFD(x̃FDS (v), v)) under free disposal.
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Figure 8: This figure illustrates the comparative statics of s1(K, v) under no disposal for
N = 10 and v ≥ 2 and with F (x) = x in Panel (a) and F (x) = x2 in Panel (b). In both
panels, K0 +K1 < N in the pink shaded region and K0 +K1 > N in the blue shaded region.
Gray dots indicate s1(K, v) = p1(v) (and s0(K, v) = p0(v)), red dots indicate s1(K, v) <
p1(v), blue dots indicate s1(K, v) > p1(v) and black dots indicate that s1(K, v) = s1(v) = v.
Similarly, gray arrows are steps in the parameter space such that s1(K, v) is constant, red
arrows are steps such that s1(K, v) decreases and blue arrow are steps such that s1(K, v)
increases. Analogous comparative statics apply to s0(K, v).

feasibility constraints are sufficiently slack and the starting prices equal pδ(v) (the single-

agent prices).

5 Conclusions

We characterize the optimal selling mechanism for a designer with horizontally differentiated

goods for sale, using a Hotelling framework in which buyers’ locations are private information

and independently drawn from a commonly known distribution, and transportation costs are

linear. The optimal mechanism, subject to incentive compatibility and interim individual

rationality, can always be implemented in dominant strategies via a two-stage clock auction

with a participation fee. We show that lottery-augmented auctions are optimal whenever

independent auctions are not. When buyers can freely dispose of any goods they do not like,

consumer and social surplus increase discontinuously as the buyers’ gross valuations increase

and the optimal mechanism transitions from independent to lottery-augmented auctions.

Extensions in Appendix OD show that lottery-augmented auctions may still be optimal if the
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designer maximizes a convex combination of revenue and social surplus, and if transportation

costs are not linear. This last extension also demonstrates that our saddle point and ironing

machinery apply beyond the case of linear transportation costs.

In the Hotelling model, buyers’ values for the two goods are perfectly negatively corre-

lated, so private information remains one-dimensional. However, the allocation rule is two-

dimensional. This multi-dimensionality gives rise to countervailing incentives and implies

that no single buyer type is interim worst off under every incentive compatible mechanism.

Moreover, there is not necessarily an interim worst-off type that is always ex post worst off

under the optimal mechanism. As a result, under dominant-strategy incentive compatibility,

the expected revenue that can be extracted under interim individual rationality typically

exceeds revenue under ex post individual rationality. This difference also explains the role

of the participation fee in the two-stage clock auction.

Of the many avenues for future research, we discuss two. One could allow for hetero-

geneity in gross valuations across the two locations—thereby introducing vertical differen-

tiation—as well as heterogeneity across buyers and in their type distributions, assuming

this heterogeneity is common knowledge to preserve one-dimensional private information.

Independently, one could allow the designer to optimally place the goods on the Hotelling

line rather than take their locations as fixed at either end. A novel aspect of this interior-

placement problem is that, beyond countervailing incentives, it gives rise to non-local in-

centive compatibility constraints, since agents may benefit from pretending to be on the

opposite side of a given good.
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A Proofs of main results

A.1 Proof of Theorem 1

Proof. As is explained in the exposition following the statement of Theorem 3, this result

follows immediately from combining the optimal allocation rule from Theorem 3 with the

description of the two-stage clock auction provided in Section 3.2 and the dominant strategy

prices summarized in Proposition 8.

A.2 Proof of Theorem 2

Proof. Suppose there exists a saddle point (Q∗, ω∗) satisfying (6) and (7). First, we show

that Q∗ solves the designer’s revenue maximization problem (5). For all Q ∈ Q, we have

min
x̂∈[0,1]

R̃(Q∗, x̂) = R̃(Q∗, ω∗) ≥ R̃(Q, ω∗) ≥ min
x̂∈[0,1]

R̃(Q, x̂), (13)

where (7) and (6) respectively imply the first and second inequalities. Thus, Q∗ solves (5).

Next, we show that a saddle point exists. Since Q is compact in the product topology53,

53Since ∆({(0, 0), (0, 1), (1, 0)}) is compact in the product topology,
∏
x∈[0,1] ∆({(0, 0), (0, 1), (1, 0)}) is

compact in the product topology by Tychonoff’s theorem. SinceQ ⊂
∏
x∈[0,1] ∆({(0, 0), (0, 1), (1, 0)}) and the

feasibility constraints and monotonicity condition (M) are weak constraints that are linear in the allocation
rule Q, it follows that Q is also compact in the product topology.
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R̃(Q, x̂) is linear in Q for all x̂ ∈ [0, 1] and R̃(Q, x̂) is concave in x̂ for all Q ∈ Q54, by Sion’s

minimax theorem a solution Q∗ to (5) exists and we have

max
Q∈Q

min
x̂∈[0,1]

R̃(Q, x̂) = min
x̂∈[0,1]

max
Q∈Q

R̃(Q, x̂) = min
x̂∈[0,1]

R̃(Q∗, x̂). (14)

Suppose every ω ∈ arg minx̂∈[0,1] R̃(Q∗, x̂) is such that (Q∗, ω) is not a saddle point (i.e., does

not satisfy (6)). This then implies that

max
Q∈Q

R̃(Q, ω) > R̃(Q∗, ω)

holds for all ω ∈ arg minx̂∈[0,1] R̃(Q∗, x̂), which contradicts (14). Consequently, there exists

ω∗ ∈ arg minx̂∈[0,1] R̃(Q∗, x̂) such that (Q∗, ω∗) is a saddle point.

We now show that ω∗ ∈ (0, 1) under no disposal. Setting x̂ = 0 we have Ψ0(x, 0, v) =

v − ψB(x) and Ψ1(x, 0, v) = v − (1− ψB(x)) on x ∈ (0, 1]. Since Ψ0(x, 0, v) is decreasing in

x and Ψ1(x, 0, v) is increasing in x, we can solve maxQ∈Q R̃(Q, 0) by pointwise maximizing

R̃(Q, 0) subject to feasibility. Since Ψ0(0, 0, v) = v + 1
f(0)

> Ψ1(0, 0, v) = v − 1 − 1
f(0)

and

Ψ1(1, 0, v) = v > Ψ0(1, 0, v) = v − 1 − 1
f(0)

, any worst-off type ω under the corresponding

pointwise maximizing ex post allocation rule must be such that ω ∈ (0, 1). Consequently,

x̂ = 0 cannot satisfy the saddle point condition and ω∗ 6= 0. The argument showing that

ω∗ 6= 1 is similar.

It only remains to show that there exists a saddle point satisfying ω∗ ∈ [v, 1 − v] under

free disposal. Feasibility requires that q1(x) = 0 on [0, 1 − v) and q0(x) = 0 on (v, 1] under

no disposal. Since monotonicity requires that q1(x) − q0(x) = −q0(x) is increasing in x on

[0, 1−v], this implies that 1−v is always worst-off on [0, 1−v]. Similarly, since monotonicity

requires that q1(x) − q0(x) = q1(x) is increasing in x on [v, 1], this implies that v is always

worst-off on [v, 1]. Thus, there exists a saddle point satisfying ω∗ ∈ [v, 1 − v] under free

disposal as required.

A.3 Proof of Theorem 3

Proof. Theorem 3 is largely proven in the body of the paper where we derive the corre-

spondence ∆q and show that Theorem 2 implies that the critical worst-off type satisfies

0 ∈ ∆q(ω∗). It only remains to prove the uniqueness claims. Combining the comparative

54Differentiating R̃(Q, x̂) with respect to x̂ using the Leibniz integral rule yields ∂R̃(Q,x̂)
∂x̂ =

[q0(x̂) (v − ψS(x̂)) + q1(x̂) (v − (1− ψS(x̂)))− q0(x̂) (v − ψB(x̂))− q1(x) (v − (1− ψB(x̂)))] f(x̂). Simplify-

ing, we have ∂R̃(Q,x̂)
∂x̂ = (q0(x̂) − q1(x̂))(ψB(x̂) − ψS(x̂))f(x̂) = q0(x̂) − q1(x̂). Since all Q ∈ Q satisfy

(M) and are such that q0(x̂)− q1(x̂) is decreasing in x̂, R̃(Q, ·) is concave in x̂ for all Q ∈ Q.
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statics from Lemma OA.2 with the continuity and monotonicity properties of the ironed vir-

tual type functions Ψ
δ

0 and Ψ
δ

1 and the definitions of the functions q0 and q1 shows that ∆q is

an upper hemicontinuous correspondence with a closed graph (see figures 6 and 7 for some ex-

amples). Moreover, ∆q is decreasing (in the sense of set inclusion) on [x̂δ0(v), x̂δ1(v)] ∩ (0, 1).

In fact, ∆q is strictly decreasing on [x̂δ0(v), x̂δA(v)] ∩ (0, 1) unless K0 = N , in which case

∆q(x̂) = 1 for all x̂ ∈ [x̂δ0(v), x̂δA(v)) ∩ (0, 1), and ∆q is strictly decreasing on [x̂A, x̂0] unless

K1 = N , in which case ∆q(x̂) = −1 for all x̂ ∈ (x̂δA(v), x̂δ1(v)] ∩ (0, 1). Putting all of this

together shows that there is at most one ω∗ ∈ [x̂0, x̂1] satisfying 0 ∈ ∆q(ω∗). Moreover, since

the ex post maximizing allocation rules are uniquely defined for all x̂ ∈ (x̂0, x̂A) ∪ (x̂A, x̂1),

if ω∗ ∈ (x̂0, x̂A) ∪ (x̂A, x̂1) then q0(ω
∗; γ) = q1(ω

∗; γ) holds for all γ ∈ [0, 1]. Otherwise, if

ω∗ ∈ {x̂0, x̂A, x̂1}, then by construction q0(ω
∗; γ) − q1(ω∗; γ) is strictly monotone in γ and,

consequently, there is a unique γ ∈ [0, 1] satisfying q0(ω
∗; γ∗) = q1(ω

∗; γ∗).
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Online Appendix

OA Proofs of auxiliary results

OA.1 Proof of Lemma 1

Proof. We begin this proof by first formally establishing the following useful lemma.

Lemma OA.1. A feasible direct mechanism 〈Q, T 〉 satisfies (IC) if and only if it satisfies

(M) and (ICFOC).

Proof. Suppose 〈Q, T 〉 is feasible and satisfies (IC). We first show that (M) holds under no

disposal. Fix any x, x̂ ∈ [0, 1]. Incentive compatibility requires q0(x)(v− x) + q1(x)(v− (1−
x))−t(x) ≥ q0(x̂)(v−x)+q1(x̂)(v−(1−x))−t(x̂) and q0(x)(v−x̂)+q1(x)(v−(1−x̂))−t(x) ≤
q0(x̂)(v − x̂) + q1(x̂)(v − (1 − x̂)) − t(x̂). Subtracting the second inequality from the first

yields (q1(x) − q0(x))(x − x̂) ≥ (q1(x̂) − q0(x̂))(x − x̂). Assuming without loss of generality

that x > x̂, this implies q1(x)−q0(x) ≥ q1(x̂)−q0(x̂). Since x and x̂ were arbitrary, it follows

that q1(x)− q0(x) is increasing on [0, 1] under no disposal.

We now extend the argument to the free disposal case. We start by piecewise verifying

that q1(x) − q0(x) is increasing on [0, 1]. First, on [1 − v, v], our previous argument under

no disposal applies directly. Second, on [0, 1 − v), feasibility requires q1(x) = 0 for all x.

Repeating our previous argument then shows that −q0(x) is increasing, so q1(x) − q0(x) =

−q0(x) is also increasing as required. Third, on (v, 1], feasibility requires q0(x) = 0 for

all x, so we similarly have that q1(x) − q0(x) = q1(x) is increasing as required. We now

consider the cross-region implications of incentive compatibility. First, if x ∈ [0, 1 − v)

and x̂ ∈ [1 − v, 1], then incentive compatibility for type x requires q0(x) ≥ q0(x̂). Since

q1(x) = 0 and q1(x)− q0(x) is increasing, a sufficient condition is q0(1− v) ≥ q0(x̂). Second,

if x ∈ (v, 1] and x̂ ∈ [0, v], incentive compatibility for type x requires q1(x) ≥ q1(x̂), and a

sufficient condition is q1(v) ≥ q1(x̂). Putting all of this together, we have that (M) holds

under free disposal.

We now show that (IC) also implies (ICFOC). Because incentive compatibility implies

u(x) = maxx̂∈[0,1]{q0(x̂)(v−x)+q1(x̂)(v−1+x)−t(x̂)}, we can apply the envelope theorem to

conclude that u is absolutely continuous, and that u′(x) = q1(x)− q0(x) almost everywhere.

Integrating yields u(x) = u(x̂) +
∫ x
x̂

(q1(y)− q0(y)) dy, and (ICFOC) holds as required.

Conversely, suppose Q satisfies monotonicity (M) and let x̂ ∈ [0, 1] be an arbitrary critical

type. For any value of u(x̂) large enough to satisfy individual rationality for all types, the
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payoff function defined by (ICFOC) and the corresponding transfers

t(x) = q0(x)(v − x) + q1(x)(v − (1− x))− u(x̂)−
∫ x

x̂

(q1(y)− q0(y)) dy (15)

implement Q in a direct mechanism that satisfies incentive compatibility. Thus, (M) and

(ICFOC) together imply that the mechanism is incentive compatible.

We now turn to proving each statement of Lemma 1. By Lemma OA.1, any incentive

compatible direct mechanism 〈Q, T 〉 satisfies (ICFOC), which in turn implies that the interim

payoff function u is convex and satisfies u′(x) = q1(x)− q0(x) almost everywhere. It follows

that the set of interim worst-off types, Ω(Q) = arg minx∈[0,1] u(x), depends only on the

allocation rule Q, which establishes the first statement of the lemma. Convexity of u also

implies that u(x) ≥ u(ω) holds for any x ∈ [0, 1] and ω ∈ {x ∈ [0, 1] : q1(x) − q0(x) =

0} ∪ {inf{x ∈ [0, 1] : q1(x) − q0(x) > 0}, sup{x ∈ [0, 1] : q1(x) − q0(x) < 0}}. Consequently,

we have Ω(Q) = {x ∈ [0, 1] : q1(x)−q0(x) = 0}∪{inf{x ∈ [0, 1] : q1(x)−q0(x) > 0}, sup{x ∈
[0, 1] : q1(x)− q0(x) < 0}}. This immediately implies the second and third statements of the

lemma. The final statement—namely, that
⋂

Q∈QΩ(Q) = ∅—follows immediately from the

example provided after the lemma.

OA.2 Proof of Proposition 4

Proof. As Lemma OA.1 establishes, a feasible direct mechanism 〈Q, T 〉 is incentive compat-

ible if and only if it satisfies (M) and (ICFOC). Moreover, given a critical type x̂ ∈ [0, 1],

the payment made by type x ∈ [0, 1] under any incentive compatible mechanism is given by

(15). Consequently, the ex ante expected payment E[t(x)] =
∫ 1

0
t(x) dF (x) made by each

buyer to the designer can be written as

E[t(x)] =

∫ 1

0

[q0(x)(v−x)+q1(x)(v−(1−x))] dF (x)−
∫ 1

0

∫ x

x̂

(q1(y)−q0(y)) dy dF (x)−u(x̂).

Applying Fubini’s theorem yields
∫ 1

0

∫ x
x̂

(q1(y) − q0(y)) dy dF (x) =
∫ 1

x̂
(q1(y) − q0(y))(1 −

F (y)) dy −
∫ x̂
0

(q1(y) − q0(y))F (y) dy. Substituting this into our expression for E[t(x)] we

have

E[t(x)] =

∫ x̂

0

[
q0(x)

(
v − x− F (x)

f(x)

)
+ q1(x)

(
v − (1− x) +

F (x)

f(x)

)]
dF (x)

+

∫ 1

x̂

[
q0(x)

(
v − x+

1− F (x)

f(x)

)
+ q1(x)

(
v − (1− x)− 1− F (x)

f(x)

)]
dF (x)− u(x̂).
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Introducing the virtual type functions ψB and ψS as defined in (1), this is equivalent to

E[t(x)] =

∫ x̂

0

[q0(x) (v − ψS(x)) + q1(x) (v − (1− ψS(x)))] dF (x)

+

∫ 1

x̂

[q0(x) (v − ψB(x)) + q1(x) (v − (1− ψB(x)))] dF (x)− u(x̂).

Finally, introducing the virtual type functions Ψ0 and Ψ1 as defined in the statement

of Proposition 4, the ex ante expected payment made by each buyer becomes E[t(x)] =∫ 1

0
[q0(x)Ψ0(x, x̂, v) + q1(x)Ψ1(x, x̂, v)] dF (x)− u(x̂). Summing over all buyers yields the to-

tal expected revenue R(Q, T ) as stated in the proposition.

OA.3 Proof of Lemma 2

Proof. Given any ω ∈ Ω(Q) and x̂ ∈ [0, 1] and using (4), we have

R̃(Q, x̂)− u(x̂) = R̃(Q, ω)− u(ω)⇒ R̃(Q, x̂)− R̃(Q, ω) = u(x̂)− u(ω). (16)

By construction, u(x̂) ≥ u(ω). If x̂ ∈ Ω(Q), then u(x̂)−u(ω) = 0 and (16) implies R̃(Q, x̂) =

R̃(Q, ω). If x̂ /∈ Ω(Q), then u(x̂) > u(ω) and (16) then implies R̃(Q, x̂) > R̃(Q, ω). Com-

bining these two cases shows that Ω(Q) = arg minx̂∈[0,1]R̃(Q, x̂), as required.

OA.4 Proof of Lemma 3

Proof. We first prove the lemma under no disposal and fix any feasible, monotone ex post

allocation rule Q ∈ Q. Broadly speaking, the proof proceeds by applying an “ironing”

procedure to the corresponding interim allocation rule q.

We start by taking the interim allocation rule q1 for good 1 and computing its increas-

ing “ironed” counterpart, which we denote by q1.
55 We then perform a transformation

where we replace q1 with q1 and q0 with q̃0 := q0 + q1 − q1. By construction, we have∫ 1

0
(q1(x)− q1(x)) dF (x) = 0,

∫ 1

0
(q0(x)− q̃1(x)) dF (x) = 0, and q1 − q0 = q1 − q̃0.

Next, we take the transformed interim allocation rule q̃0 for good 0 and consider its

decreasing “ironed” counterpart, which we denote by q̂0.
56 We now perform a second trans-

formation where we replace q̃0 with q̂0 and q1 with q̂1 := q1 + q̂0 − q̃0. By construction, we

again have
∫ 1

0
(q1(x)− q̂1(x)) dF (x) = 0,

∫ 1

0
(q0(x)− q̂0(x)) dF (x) = 0, and q1 − q0 = q̂1 − q̂0.

55Specifically, we introduce a function Q1(x) :=
∫ x
0
q1(y) dF (y), compute its convexification Q1 (i.e., the

largest convex function that is less than Q1 at every point), and then set q1(x) = Q
′
1(x).

56Specifically, we introduce a function Q̃0(x) :=
∫ x
0
q̃0(y) dF (y), compute its concavification Q̂0 (i.e., the

smallest concave function that is greater than Q̃0 at every point), and then set q̂0(x) = Q̂′0(x).
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Moreover, the transformed allocation rule q̂0 is decreasing by construction. We now argue

that the allocation rule q̂1 is increasing. Since q1 is increasing by construction, it suffices

to check this condition for any x′ ∈ [0, 1] such that q̂0(x
′) 6= q̃0(x

′). However, q̂0 is neces-

sarily constant at such an x′ ∈ [0, 1]. Consequently, if q̂1 was strictly decreasing at such an

x′ ∈ [0, 1], then this would contradict the monotonicity of the original allocation rule (which

requires that q1 − q0 = q̂1 − q̂0 is increasing). Thus, q̂1 is increasing as required.

The transformed allocation rule q̂ and the original allocation rule q both allocate the

same expected quantity of each good and satisfy the monotonicity condition, and the trans-

formed allocation rule additionally satisfies strong monotonicity. It remains to verify that the

transformed allocation rule q̂ is feasible. That is, we must check that q̂0(x) ≥ 0, q̂1(x) ≥ 0,

and q̂1(x) + q̂0(x) ≤ 1 hold for each type x ∈ [0, 1].

We first address the non-negativity constraints. We start by showing that q̃0(x) ≥ 0

and q1(x) ≥ 0 hold for all x ∈ [0, 1] (that is, the first step of our transformation does not

lead to a violation of the non-negativity constraints). To that end, we only need to consider

types x ∈ [0, 1] such that q1(x) ≥ q1(x). By construction, for any such type there exists

another type x′ ∈ [0, 1] such that x′ > x and q1(x) ≥ q1(x
′). Since q1(x

′) ≥ 0 holds by

assumption this shows that q1(x) ≥ 0. Moreover, by monotonicity we have q1(x
′)− q0(x′) ≥

q1(x) − q0(x). Rearranging this and using q1(x) ≥ q1(x
′) and q0(x

′) ≥ 0 yields q0(x) ≥
q1(x) + q0(x

′)− q1(x′) ≥ q1(x)− q1(x). We therefore have q̃0(x) = q0(x)− (q1(x)− q1(x)) ≥ 0

as required, and q̃0(x) ≥ 0 and q1(x) ≥ 0 hold for all x ∈ [0, 1]. We now show that q̂0(x) ≥ 0

and q̂1(x) ≥ 0 hold for all x ∈ [0, 1] (that is, the second step of our transformation does

not lead to a violation of the non-negativity constraints). To that end, we only need to

consider types x ∈ [0, 1] such that q̃0(x) ≥ q0(x). By construction, for any such type there

exists another type x′ ∈ [0, 1] such that x > x′ and q0(x) ≥ q̃0(x
′). Since q̃0(x

′) ≥ 0

holds by our previous argument, this shows that q0(x) ≥ 0. Moreover, by monotonicity

we have q1(x) − q̃0(x) ≥ q1(x
′) − q̃0(x

′). Rearranging this and using q0(x) ≥ q̃0(x
′) and

q1(x
′) ≥ 0 yields q1(x) ≥ q1(x

′) + q̃0(x)− q̃0(x′) ≥ q̃0(x)− q̂0(x). We therefore have q̂1(x) =

q1(x
′)− (q̃0(x)− q̂0(x)) ≥ 0 as required and q̂0(x) ≥ 0 and q̂1(x) ≥ 0 hold for all x ∈ [0, 1].

We now address the unit demand constraints. We start by showing that q̃0(x)+q1(x) ≤ 1

holds for all x ∈ [0, 1] (that is, the first transformation cannot result in a violation of the

unit demand constraints). To that end, we only need to consider types x ∈ [0, 1] such that

q1(x) − q1(x) > 0. By construction, for any such type there exists another type x′ ∈ [0, 1]

such that x′ < x and q1(x) ≤ q1(x
′). Monotonicity implies that q1(x

′)−q0(x′) ≤ q1(x)−q0(x).

Rearranging this inequality and adding q1(x
′) to both sides then yields

q0(x) + q1(x
′)− q1(x) + q1(x

′) ≤ q0(x
′) + q1(x

′). (17)
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Combining (17) with q1(x) ≤ q1(x
′), as well as the fact that q0(x

′) + q1(x
′) ≤ 1 holds

by assumption, we have q0(x) + q1(x) − q1(x) + q1(x) ≤ 1. Finally, noting that q̃0(x) =

q0(x) + q1(x
′) − q1(x), shows that we have q̃0(x) + q1(x) ≤ 1 as required. We now show

that q̂1(x) + q̂0(x) ≤ 1 holds for all x ∈ [0, 1] (that is, the second transformation also cannot

result in such a violation of the unit demand constraints). To that end, we again only need

to consider types x ∈ [0, 1] such that q̂0(x) − q̃0(x) > 0. For any such type, there exists

another type x′ ∈ [0, 1] such that x′ > x and q̂0(x) ≤ q̃0(x
′). Monotonicity implies that

q1(x)− q̃0(x) ≤ q1(x
′)− q̃0(x′). Rearranging this inequality and adding q̃0(x

′) to both sides

yields

q1(x) + q̃0(x
′)− q̃0(x) + q̃0(x

′) ≤ q1(x
′) + q̃0(x

′). (18)

Combining (18) with q̂0(x) ≤ q̃0(x
′), as well as the fact that q1(x

′) + q̃0(x
′) ≤ 1 holds by

our previous argument, we have q1(x) + q̂0(x) − q̃0(x) + q̂0(x) ≤ 1. Finally, noting that

q̂1(x) = q1(x) + q̂0(x) − q̃0(x), shows that q̂1(x) + q̂0(x) ≤ 1 holds for all x ∈ [0, 1] and the

transformed allocation rule does not violate the unit demand constraint for any type.

Since the constructed interim allocation rule q̂ is feasible and satisfies strong mono-

tonicity, this guarantees the existence of a feasible ex post allocation rule Q̂ ∈ QSM that

implements q̂.57

It only remains to verify the final statement of the lemma. Note that since we have

q1 − q0 = q̂1 − q̂0, Lemma 1 then immediately implies that Ω(Q) = Ω(Q̂). If we then take

any ω ∈ Ω(Q) and set u(ω) = 0, (ICFOC) immediately implies that the interim expected

payoff of each agent is invariant under the transformation that replaces the allocation rule

Q with the allocation rule Q̂. Moreover, by (15) the change in the payment made by type

x ∈ [0, 1] under this transformation is given by

t̂(x)− t(x) = (q̂0(x)− q0(x))(v − x) + (q̂1(x)− q1(x))(v − 1 + x)

= (q̂0(x)− q0(x))(2v − 1),

where the second inequality follows from the fact that q̂0(x) − q0(x) = q̂1(x) − q1(x) holds

by construction. The corresponding change in the designer’s revenue is then given by

N

∫ 1

0

(t̂(x)− t(x)) dx = (2v − 1)N

∫ 1

0

(q̂0(x)− q0(x)) dx = 0

as required.

57This follows from standard implementability results for environments with independent and identically
distributed types and linear capacity constraints; see Border (1991).
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We now turn to the case with free disposal. Under free disposal, feasibility implies that

the initial allocation rule Q satisfies q0(x) = 0 for all x ∈ (v, 1] and q1(x) = 0 for all

x ∈ [0, 1−v). Moreover, monotonicity implies that q0 is decreasing on [0, 1−v] and bounded

above by q0(1− v) on [1− v, v], and q1 is increasing on [v, 1] and bounded above by q1(v) on

[1− v, v]. Consequently, for the free disposal case, we apply the ironing procedure from the

no disposal case, but restrict it to the interval [1− v, v], so that Q = Q̂ on [0, 1− v]∪ [v, 1].

The resulting allocation rule Q̂ satisfies strong monotonicity because q̂0 is increasing, q̂1 is

decreasing, q̂0(x) is bounded above by q0(1− v) on [1− v, 1] and q̂1(x) is bounded above by

q1(v) on [0, v].

OA.5 Proof of Lemma 4

Proof. We have already established that if there exists a critical type x̂ ∈ (0, 1) such that

zδ0(x̂, v), zδ1(x̂, v) ≤ 0, then the optimal selling mechanism involves running independent auc-

tions. Otherwise, there exists a critical type x̂ ∈ (0, 1) such that zδ0(x̂, v), zδ1(x̂, v) > 0 and

the optimal mechanism is a lottery-augmented auction. It remains to establish the following.

First, the existence of a unique threshold vLA such that if v ≤ vLA, then the optimal selling

mechanism involves running independent auctions and if v > vLA, then the optimal selling

mechanism is a lottery-augmented auction. Second, that if v = vLA, then there is a unique

critical worst-off type ω∗ such that zδ0(ω∗, v) = zδ1(ω∗, v) = 0 and the designer is indifferent

between running independent auctions and using a lottery-augmented auction. Third, we

need to show that we have vLA = 1/2 under no disposal and vLA ∈ (1/2, vNO) under free

disposal. Finally, we need to show that whenever v > vLA, there is a unique critical worst-

off type ω∗. We begin with the following lemma, which establishes useful continuity and

monotonicity properties of the ironing parameters and the lottery intervals:

Lemma OA.2. The ironing parameters zδ0(x̂, v) and zδ1(x̂, v) are continuous in x̂ and strictly

decreasing and increasing in x̂, respectively. The ironing parameters zδ0(x̂, v) and zδ1(x̂, v) are

also continuous and strictly increasing in v. The endpoints of the ironing interval Lδ(x̂, v)∪
Rδ
`(x̂, v) associated with good ` ∈ {0, 1} are continuous and increasing in x̂, and are strictly

increasing in x̂ away from the lower bound of 0 and upper bound of 1.

Proof. We prove this result for the no disposal case. An analogous argument applies under

free disposal. Under no disposal, continuity of z0(x̂, v) and z1(x̂, v) in x̂ follows immediately

from (10) and (11), as well as the facts that ψS and ψB are continuous functions and F is

an absolutely continuous distribution. That z0(x̂, v) and z1(x̂, v) are strictly decreasing and

increasing, respectively, in x̂ follows directly from (10) and (11) and the fact that ψS and ψB

are increasing functions. That x(x̂) and x(x̂) are continuous in x̂ follows immediately from
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(8) and (9), and continuity of ψB, ψS, z0 and z1. That x(x̂) and x(x̂) are increasing in x̂

(and strictly so away from the 0 and 1 bounds) follows immediately from (8) and (9), that

z0(x̂) and z1(x̂) are respectively decreasing and increasing in x̂ and that ψ−1B and ψ−1S are

increasing functions. Finally, that z0(x̂, v) and z1(x̂, v) are continuous and strictly increasing

in v follows immediately from the fact that Ψ0(x, x̂, v) and Ψ1(x, x̂, v) are continuous and

strictly increasing in v.

We now show that vLA = 1/2 holds under no disposal. Let x̂A ∈ (0, 1) denote the

unique critical type satisfying z0(x̂A, v) = z1(x̂A, v).58 Lemma OA.2 then implies that there

exists x̂ such that z0(x̂, v), z1(x̂, v) ≤ 0 if and only if z0(x̂A, v) = z1(x̂A, v) ≤ 0. Evaluating

the identity z0(x̂, v) + z1(x̂, v) = 2v − 1 at x̂ = x̂A and rearranging shows that we have

z0(x̂A, v) = z1(x̂A, v) ≤ 0 if and only if v ≤ 1/2. Consequently, vLA = 1/2 holds under no

disposal as required.

Next, we consider the free disposal case. The existence of a unique threshold vLA ≥ 1/2

such that independent auctions are optimal if v ≤ vLA and a lottery-augmented auction is

optimal if v > vLA follows from the arguments provided in the body of the paper, as well as

the fact that the ironing parameters zFD0 (x̂, v) and zFD1 (x̂, v) are continuous and increasing

in v, as established in Lemma OA.2. It remains to show that vLA ∈ (1/2, vNO). First,

suppose that v = 1/2. By Theorem 2, we then have ω∗ = 1/2. Straightforward algebra then

shows that zFD0 (1/2, 1/2), zFD1 (1/2, 1/2) < 0 and, consequently, that independent auctions

are optimal if v = 1/2. Thus, we have vLA > 1/2 under free disposal. Second, suppose

that v = vNO. The definition of vNO then implies that there is a unique worst-off type,

which we denote by ωNO, under independent auctions with optimally chosen reserves. By

construction, we have vNO − ψS(ωNO) = 0 and vNO − (1 − ψB(ωNO)) = 0. Moreover,

the geometry of our ironing procedure implies that, for all v > 1/2 and x̂ ∈ [1 − v, v],

zFD0 (x̂, v) > v − ψS(x̂) and zFD1 (x̂, v) > v − (1− ψB(x̂)). Combining these arguments shows

that zFD0 (ωNO, vNO), zFD1 (ωNO, vNO) > 0. Consequently, the allocation rule that pointwise

maximizes the ironed virtual surplus function R
FD

(·, ωNO), subject to allocative feasibility,

is not consistent with independent auctions and independent auctions with optimally chosen

reserves do not satisfy the saddle point condition. This establishes that independent auctions

are not optimal when v = vNO and, consequently, that vLA < vNO.

We now consider the threshold v = vLA. The definition of x̂A and the comparative statics

of Lemma OA.2 together imply that there exists x̂ satisfying z0(x̂, v), z1(x̂, v) < 0 if and only

if z0(x̂A, v) = z1(x̂A, v) < 0 and there exists x̂ satisfying z0(x̂, v), z1(x̂, v) > 0 if and only if

58Combining Lemma OA.2 with the fact that z0(0, v) = z1(1, v) = v + 1/f(0) > z0(1, v) = z1(0, v) =
v− 1− 1/f(1) establishes that such a critical type exists and is unique. That x̂A is independent of v follows
from the fact that the ironing interval [x(x̂), x(x̂)] does not depend on v under no disposal.
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z0(x̂A, v) = z1(x̂A, v) > 0. By continuity, at v = vLA, we must have z0(x̂A, v) = z1(x̂A, v) = 0

and ω∗ = x̂A must be the unique critical worst-off type. If both ironing parameters are zero,

this immediately implies that the designer must be indifferent between running independent

auctions and a lottery-augmented auction.

We conclude by showing that if v > vLA, then the critical worst-off type ω∗ is unique. In

this case, the optimal mechanism is a lottery-augmented auction that serves all types with

positive probability. Since each critical type x̂ determines a unique set of ironing intervals,

any change in x̂ alters the corresponding allocation rule that pointwise maximizes R(·, x̂) on

a set of positive measure. Since the optimal allocation rule is unique up to a set of measure

zero whenever v 6= vLA, this implies that if v > vLA, then the critical worst-off type ω∗ must

be unique.

OA.6 Proof of Lemma 5

Proof. The statement of Lemma 5 follows immediately from the statement of Lemma 4, as

well as the definitions of the bounds x̂δ0(v) and x̂δ1(v). It only remains to show that these

bounds satisfy x̂δ0(v) > 1 − v and x̂δ1(v) < v under free disposal. To that end, setting

x̂ = v, we have Ψ
FD

0 (x, v, v) = (v − ψS(x))1(x ≤ v) − ∞1(x > v). Consequently, we

have zFD0 (v, v) = v − ψS(v) and applying (2) then shows that zFD0 (v, v) < 0, which in turn

implies that x̂FD1 (v) < v. An analogous argument establishes that zFD1 (1 − v, v) < 0 and

x̂FD0 (v) > 1− v.

OA.7 Proof of Proposition 5

Proof. We begin this proof by formally establishing the existence of a critical type x̂δA(v), as

introduced in Definition 1. The no disposal case is already covered in the proof of Lemma 4

(see the sentence preceding footnote 58). So we now focus on the free disposal case. Recall

from Lemma OA.2 that zFD0 (x̂, v) and zFD1 (x̂, v) are continuous in x̂ and strictly decrease and

increase in x̂, respectively. Moreover, as we established in the proof of Lemma 5, under free

disposal we have zFD0 (v, v) < 0 and zFD1 (1−v, v) < 0. Since v > vLA implies the existence of

a critical type x̂ such that zFD0 (x̂, v), zFD1 (x̂, v) > 0, putting all of this together, there exists

a unique critical type x̂FDA (v) such that zFD0 (x̂δA(v), v) = zFD1 (x̂δA(v), v) > 0 as required.

This completes the proof as the argument preceding the statement of Proposition 5 shows

that ω∗ = x̂δA(v) and provides the derivation of the optimal allocation rule q∗.
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OA.8 Proof of Proposition 6

Proof. We begin by establishing the existence and uniqueness claims from Definition 2. We

first consider the no disposal case and show that there exists a unique critical type x̂S ∈ (0, 1)

such that F (x(x̂S)) = 1− F (x(x̂S)). Under no disposal, the endpoints x(x̂) and x(x̂) of the

ironing interval depend only on x̂ and not on v, so x̂S is independent of v. Let x̃0 := max{x̂ ∈
[0, 1] : x(x̂) = 0} and x̃1 := min{x̂ ∈ [0, 1] : x(x̂) = 1}. Since the ironing interval [x(x̂), x(x̂)]

is a strict subset of [0, 1] for all x̂ ∈ [0, 1], we have x̃0 < x̃1. Since F (x) is continuous

and strictly increasing in x, combining our existing comparative statics from Lemma OA.2

with (8) and (9) reveals that F (x(x̂)) is continuous and strictly increasing on [x̃0, 1] with

F (x(x̂)) = 0 on [0, x̃0] and F (x(1)) = 1, and 1−F (x(x̂)) is continuous and strictly decreasing

in x̂ on [0, x̃1] with 1−F (x(x̂)) = 0 on [x̃1, 1] and 1−F (x(0)) = 1. Putting all of this together

then shows that there exists a unique x̂S ∈ (x̃0, x̃1) such that F (x(x̂S)) = 1− F (x(x̂S)). We

now turn to the free disposal case. Here, an analogous argument shows that there is a unique

critical type x̂FDS (v) satisfying F (xFD(x̂S(v), v)) = 1 − F (xFD(x̂S(v), v)), whenever such a

critical type exists. However, such a type need not exist, since feasibility under free disposal

requires that [xFD(x̂S(v), v), xFD(x̂S(v), v)] ⊂ [1− v, v].

This now completes the proof as, with Definition 2 in hand, the statement of Proposition

6 is proven in the body of the paper.

OA.9 Proof of Proposition 3

Proof. By Lemma 4, at v = vLA the designer is indifferent between running independent auc-

tions and a lottery-augmented auction and, consequently, zFD0 (ω∗, vLA) = zFD1 (ω∗, vLA) = 0.

This implies that xFD0 (ω∗, vLA) = ψ−1S (vLA) and xFD1 (ω∗, vLA) = ψ−1B (1 − vLA), so the effi-

cient intervals under the lottery-augmented auction are EFD
0 (ω∗, vLA) = [0, ψ−1S (vLA)) and

EFD
1 (ω∗, vLA) = (ψ−1B (1−vLA), 1]. These coincide with the types that participate in indepen-

dent auctions with optimal reserve prices, and their ex post and interim allocations are iden-

tical across the two mechanisms. Under independent auctions, every type in EFD
0 (ω∗, vLA)

or EFD
1 (ω∗, vLA) earns strictly positive surplus, whereas every type in the lottery interval

LFD(ω∗, vLA) and any rationing intervals RFD
` (ω∗, vLA) earn a payoff of zero. Since all types

in LFD(ω∗, vLA) are also worst-off under the lottery-augmented auction, any difference in

consumer surplus between the mechanisms must stem from changes in the payoffs of types

in the RFD
` (ω∗, vLA) and EFD

` (ω∗, vLA) intervals.

Suppose RFD
0 (ω∗, vLA) 6= ∅. Then every type in the interior of this interval earns a

strictly positive payoff under the lottery-augmented auction. By payoff equivalence, all

types in the corresponding efficient interval EFD
0 (ω∗, vLA) also earn strictly higher payoffs

63



under the lottery-augmented auction. Relative to independent auctions, the payoffs of types

in LFD(ω∗, vLA) and EFD
1 (ω∗, vLA) are unaffected by the increase in the interim allocation for

types in RFD
0 (ω∗, vLA) under the lottery-augmented auction. A symmetric argument applies

if RFD
1 (ω∗, vLA) 6= ∅. In either case, all types are weakly better off, and some strictly so.

It remains to show that at least one rationing interval must be nonempty. Assume, to the

contrary, that RFD
0 (ω∗, vLA) = RFD

1 (ω∗, vLA) = ∅. Then the ironed virtual type functions

coincide with those under no disposal and, consequently, (zFD0 (ω∗, vLA) + zFD1 (ω∗, vLA))/2 =

vLA − 1/2. Since vLA > 1/2, the right-hand side is positive, contradicting zFD0 (ω∗, vLA) =

zFD1 (ω∗, vLA) = 0. Therefore, some rationing interval RFD
` (ω∗, vLA) is nonempty, and con-

sumer surplus is strictly higher while every consumer is weakly better off under the lottery-

augmented auction.

OA.10 Proof of Lemma 6

Proof. Suppose v ≤ vLA. Then we have [v− r∗0(v), r∗1(v)− v+ 1] ⊂ ΩEX(x−n) for all profiles

x−n, since any buyer not allocated a unit is ex post worst off. Moreover, for profiles x−n such

that the K0th lowest element is greater than v − r∗0(v) and the K1th highest element is less

than r∗1(v)−v+1, we have ΩEX(x−n) = [v−r∗0(v), r∗1(v)−v+1]. Taking the intersection over

all x−n, it follows thatWEX = [v− r∗0(v), r∗1(v)−v+ 1]. Next, suppose v > vLA and consider

single-agent problems, i.e., K0 = K1 = N . As previously noted, there is then no difference

between ex post and interim individual rationality, implying thatWEX = Lδ(ω∗, v). Finally,

suppose v > vLA and N > min{K0, K1}. Then both ωEX(x−n) = min{Lδ(ω∗, v)} and

ωEX(x−n) = max{Lδ(ω∗, v)}, which implies that WEX = ∅.

OA.11 Proof of Proposition 8

Proof. That the menu of dominant strategy prices is given by the Mussa-Rosen prices an-

chored at the relevant worst-off types has been shown in the text. So it only remains to prove

the statements pertaining to expected revenues. For the purpose of this proof, we denote

the optimal allocation rule by Q∗.

First, suppose that WEX = ∅. Then for any interim worst-off type ω ∈ Ω(Q∗), there

exists a profile x−n such that U(ω,x−n) > 0. Consequently, every such type pays a strictly

smaller expected transfer—and the designer thereby generates less expected revenue—under

ex post than under interim individual rationality. Conversely, suppose that WEX 6= ∅.
Then there exists some x ∈ WEX such that U(x,x−n) = 0 for all profiles x−n, and hence

u(x) = 0. So x is interim worst-off, and WEX ⊂ Ω(Q∗). Moreover, since all types in Ω(Q∗)

receive the same ex post allocation and transfer, if WEX ∩ Ω(Q∗) 6= ∅, then this implies
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that Ω(Q∗) ⊂ WEX . Hence, WEX = Ω(Q∗), the expected transfer of the interim worst-off

types is the same under both IR notions, and there is no revenue gap. This completes the

proof.

OA.12 Proof of Proposition 9

The proof proceeds in three steps. First, we establish preliminary comparative statics for

scarce markets satisfying K0 + K1 < N (Lemma OA.3) and balanced markets satisfying

K0 +K1 = N (Lemma OA.4). We then extend these results to abundant markets satisfying

K0 + K1 > N (Lemma OA.5). The core of the argument relies on identifying comparative

statics of the critical worst-off type ω∗. The proof concludes by translating these comparative

statics into corresponding statements about the ascending-price auction starting prices.

If v ≥ 1 + max {1/f(0), 1/f(1)}, then there is no disposal, and x̂0(v) = 0 and x̂1(v) = 1.

Consequently, the critical worst-off type ω∗ does not depend on v, and we can denote it by

ω∗(K) in this case. Moreover, if v ≥ 1 + max {1/f(0), 1/f(1)}, the seller’s marginal revenue

from serving type x ∈ [0, 1] good ` ∈ {0, 1} is always positive. For much of this proof, we

therefore focus on the case v ≥ 1 + max {1/f(0), 1/f(1)}, as this substantially simplifies the

structure of the proof.

Lemma OA.3. Suppose v ≥ 1 + max {1/f(0), 1/f(1)} and K0 + K1 < N . Then ω∗(K) <

ω∗(K0 + 1, K1) and ω∗(K) > ω∗(K0, K1 + 1). If K0 = K1 = K, where K ≤ bN
2
c, then

ω∗(K,K) = x̂S.

Proof. We begin by noting that whenever v ≥ 1 + max {1/f(0), 1/f(1)} and K0 + K1 ≤
N , there is a unique allocation rule that pointwise maximizes the designer’s ironed virtual

objective function R(·, x̂) for all x̂ ∈ (0, 1). Let Q`(i, j, x̂,K) denote the probability that a

given buyer is allocated good ` ∈ {0, 1} when reporting type x ∈ [x(x̂), x(x̂)], conditional on

i ≥ 0 other buyers reporting types below x(x̂) and j ≥ 0 reporting types above x(x̂), under

the ex post allocation rule that pointwise maximizes R(·, x̂). Letting p(i, j, x̂) denote the

probability of any feasible state (i, j) ∈ {0, 1, . . . , N − 1}2 with i+ j ≤ N − 1,

p(i, j, x̂) =

(
N − 1

i,N − 1− i− j, j

)
(F (x(x̂)))i (F (x(x̂))− F (x(x̂)))N−1−i−j (1− F (x(x̂)))j , (19)

where the multinomial coefficient is given by
(

N−1
i,N−1−i−j,j

)
= (N−1)!

i!(N−1−i−j)!j! .
59 The interim

probability that any buyer reporting a type x ∈ [x(x̂), x(x̂)] is allocated good ` ∈ {0, 1} is

59Adopting the standard combinatorial convention that 00 = 1 ensures this expression remains valid when
x̂ = 0 or x̂ = 1, or when x(x̂) = 0 or x(x̂) = 1.
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then

q`(x̂,K) :=
N−1∑
i=0

N−1−i∑
j=0

p(i, j, x̂)Q`(i, j, x̂,K).

Fix any K such that K0 + K1 < N . We first show that ω∗(K) < ω∗(K0 + 1, K1). Holding

the critical type ω∗(K) fixed, we consider how the allocation rule that pointwise maxi-

mizes the designer’s ironed virtual objective R(·, ω∗(K)) varies as the endowment increases

from K to (K0 + 1, K1). That is, we compare the allocation rules Q(i, j, ω∗(K),K) and

Q(i, j, ω∗(K), K0 + 1, K1). For any feasible state (i, j) such that i ≥ N −K1 or j ≥ N −K0,

increasing the supply of good 0 by one unit does not change the deterministic ex post al-

location for buyers in the lottery interval.60 However, for any feasible state (i, j) such that

i < N − K1 and j < N − K0, buyers in the lottery interval are rationed with positive

probability. In these states, increasing the supply of good 0 by one unit ensures that the

ex post lottery offered to buyers in the lottery interval includes one additional unit of good

0. Putting all of this together—and using the fact that q0(ω
∗(K),K) = q1(ω

∗(K),K)

holds by construction, because the corresponding optimal mechanism is a lottery-augmented

auction—we obtain q0(ω
∗(K), K0 + 1, K1) > q1(ω

∗(K), K0 + 1, K1). Combining the com-

parative statics concerning the ironing interval from Lemma OA.2 with the continuity and

monotonicity of the functions Ψ0 and Ψ1 and the definitions of the functions q0 and q1

shows that these interim allocations are decreasing and increasing in ω∗, respectively. Con-

sequently, combining q0(ω
∗(K), K0 + 1, K1) > q1(ω

∗(K), K0 + 1, K1) with the fact that

q0(ω
∗(K0 + 1, K1), K0 + 1, K1) = q1(ω

∗(K0 + 1, K1), K0 + 1, K1) also holds by construction

(since this is again a lottery-augmented auction), shows that ω∗(K) < ω∗(K0 + 1, K1), as

required. The argument proving that ω∗(K) > ω∗(K0, K1 + 1) is analogous.

It only remains to show that ω∗(K,K) = x̂S for K ≤ bN
2
c. In this case, we have

Q0(i, j, x̂S, K,K) =


0, i ≥ K

1, j ≥ N −K
N−i
N−i−j , i < K, j < N −K

, Q1(i, j, x̂S, K,K) =


0, j ≥ K

1, i ≥ N −K
N−j
N−i−j , j < K, i < N −K

.

Notice that, for all (i, j) ∈ {0, 1, . . . , N−1}2 such that i+j ≤ N−1, we haveQ0(i, j, x̂S, K,K) =

Q1(j, i, x̂S, K,K). Moreover, by the definition of x̂S, we also have p(i, j, x̂S) = p(j, i, x̂S).

60Since K0 + K1 < N , buyers in the lottery interval are allocated good 0 (resp. 1) before and after
the endowment change, regardless of the relative values of the ironing parameters z0(ω∗, v) and z1(ω∗, v),
whenever j ≥ N −K0 (resp. i ≥ N −K1).
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Putting these facts together yields

q0(x̂S, K,K) =
N−1∑
i=0

N−1−j∑
j=0

p(i, j, x̂S)Q0(i, j, x̂S, K,K) =
N−1∑
i=0

N−1−j∑
j=0

p(j, i, x̂S)Q1(j, i, x̂S, K,K) = q1(x̂S, K,K).

Consequently, ω∗ = x̂S is the critical worst-off type, as required.

The following figures modify the panels of Figure 8 so that they display the critical worst-

off type ω∗(K) and include only the information that has been established up to this point

in the proof.
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Lemma OA.4. Suppose v ≥ 1+max {1/f(0), 1/f(1)} and K0 +K1 ≥ N . Then there exists

KA = (KA
0 , K

A
1 ) satisfying KA

0 +KA
1 ∈ {N,N + 1} such that ω∗(K) = x̂A for all ` ∈ {0, 1}

if and only if K ≥KA.

Proof. We start this proof by considering balanced markets such that K0 + K1 = N . We

parameterize these markets by (K,N −K), where K ∈ {1, . . . , N − 1}.
We first show that ω∗(K,N − K) is strictly increasing in K ∈ {1, . . . , N − 1} and,

consequently, there is at most one value of K such that ω∗(K,N − K) = x̂A. For the

proof of this claim only, we restrict attention to the case where N ≥ 3, since the claim is

vacuous if N = 2 (and K0 = K1 = 1 is then the only balanced market parameterization).

The desired result then follows immediately from Lemma OA.3. In particular, we have

ω∗(K,N − K) < ω∗(K,N − K − 1) and ω∗(K,N − K − 1) < ω∗(K + 1, N − K − 1) and

combining these comparative statics then shows that ω∗(K,N −K) < ω∗(K+ 1, N −K− 1)

as required.

Next, starting from a balanced market, we examine how the critical worst-off type changes

when the supply of one good increases. Specifically, for K ∈ {1, . . . , N − 1}, we show the
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following: if ω∗(K,N − K) < x̂A, then increasing the supply of good 1 has no effect on

ω∗; that is, ω∗(K,K1) = ω∗(K,N − K) for all K1 ∈ {N − K, . . . , N}. Conversely, if

ω∗(K,N − K) > x̂A, then increasing the supply of good 0 has no effect on ω∗; that is,

ω∗(K0, N −K) = ω∗(K,N −K) for all K0 ∈ {K, . . . , N}. We establish this result for the

first case, where ω∗(K,N −K) < x̂A; the second case is analogous.

Fix K ∈ {1, . . . , N − 1} and suppose ω∗(K,N −K) < x̂A. To prove the claim, we hold

the critical type ω∗(K,N − K) fixed and examine how the allocation rule that pointwise

maximizes R(·, ω∗(K,N − K)) changes as the endowment increases from (K,N − K) to

(K,K1). Notice that the critical type ω∗(K,N − K) is such that z0(ω
∗(K,N − K), v) >

z1(ω
∗(K,N −K), v) and under the endowment (K,N −K) buyers in the lottery interval are

served with probability 1. Consequently, for any feasible state (i, j) such that i > K or j ≥
N −K, increasing the supply of good 1 does not change the deterministic ex post allocation

for buyers in the lottery interval.61 Moreover, for any feasible state (i, j) such that i ≤ K

and j < N−K, increasing the supply of good 1 has no effect on the ex post lottery offered to

buyers in the lottery interval. While increasing the supply of good 1 makes it feasible for the

seller to include more units of good 1 in the lottery offered to buyers in the lottery interval,

this is not consistent with pointwise maximization as z0(ω
∗(K,N −K), v) > z1(ω

∗(K,N −
K), v). Putting all of this together—and using the fact that q0(ω

∗(K,N −K), K,N −K) =

q1(ω
∗(K,N − K), K,N − K) holds by construction—we have q0(ω

∗(K,N − K), K,K1) =

q1(ω
∗(K,N−K), K,K1). Consequently, we then have ω∗(K,K1) = ω∗(K,N−K) as required.

The following figure updates our modified version of the panels in Figure 8 to reflect the

new results established here.
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61If i > K (resp. j ≥ N −K) all buyers in the lottery interval are allocated a unit of good 1 (resp. 0)
before and after the endowment change.
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As these figures illustrate, we are now left with a “rectangle” of parameterizations K

in the region K0 + K1 ≥ N that have not been identified as satisfying ω∗(K) < x̂A or

ω∗(K) > x̂A. Letting (KA
0 , K

A
1 ) denote the bottom-left corner of this rectangle, one of four

cases must apply:

(i) If there exists K ∈ {1, . . . , N − 1} such that ω∗(K,N −K) = x̂A, then KA
0 = K and

KA
1 = N −K.

(ii) If there exists K ∈ {1, . . . , N−2} such that x̂A ∈ (ω∗(K,N−K), ω∗(K+1, N−K−1)),

then KA
0 = K + 1 and KA

1 = N −K.

(iii) If ω∗(1, N − 1) > x̂A, then KA
0 = 1 and KA

1 = N .

(iv) If ω∗(N − 1, 1) < x̂A, then KA
0 = N and KA

1 = 1.

Panel (a) of Figure 8 provides an example of case (i), and Panel (b) illustrates case (ii).

Examples of cases (iii) and (iv) are shown in the following figures.62
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Claim OA.1. The endowment (KA
0 , K

A
1 ) satisfies ω∗(KA

0 , K
A
1 ) = x̂A.

Proof. For case (i), the result holds by construction, and the proof for case (iv) is analogous

to the argument for case (iii). We therefore focus on cases (ii) and (iii).

Suppose case (ii) applies, and there exist integers KA
0 ∈ {2, . . . , N − 1} and KA

1 ∈
{2, . . . , N − 1} with KA

0 +KA
1 = N + 1 such that x̂A ∈ (ω∗(KA

0 − 1, KA
1 ), ω∗(KA

0 , K
A
1 − 1)).

Throughout this argument, we say that a critical type x̂ is LA-feasible under the endowment

K if the seller can construct an ex post allocation rule Q̌(·, x̂,K) (and corresponding interim

62For a given distribution F , cases (iii) or (iv) can arise only if N is sufficiently small.
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allocation q̌(·, x̂,K)) that satisfies the following conditions. First, all buyers in [0, x(x̂)) and

(x(x̂), 1] are prioritized for the allocation of good 0 and good 1, respectively, based on

their proximity to these goods. Second, the remaining supply of each good is sufficient to

allocate buyers with x ∈ [x(x̂), x(x̂)] in such a way that their interim allocations satisfy

q̌0(x, x̂,K) = q̌1(x, x̂,K) = 1/2.63 Finally, any unserved buyers in [0, x(x̂)) are allocated

good 1, and any unserved buyers in (x(x̂), 1] are allocated good 0.64 LA-feasibility ensures

that the seller can implement a lottery-augmented auction with lottery interval [x(x̂), x(x̂)],

while otherwise pointwise maximizing R(·, x̂) on [0, x(x̂)) ∪ (x(x̂), 1]. If the allocation rule

Q̌(·, x̂,K) globally pointwise maximizes R(·, x̂), then the saddle point condition is satisfied,

and x̂ = ω∗(K).65

Now observe that ω∗(KA
0 −1, KA

1 ) < x̂A is LA-feasible under the endowment (KA
0 −1, KA

1 ),

and ω∗(KA
0 , K

A
1 −1) > x̂A is LA-feasible under the endowment (KA

0 , K
A
1 −1). Since (KA

0 , K
A
1 )

is the join of these two endowments, any x̂ ∈ [ω∗(KA
0 − 1, KA

1 ), ω∗(KA
0 , K

A
1 − 1)] is LA-

feasible under this endowment. Moreover, x̂A is the unique LA-feasible critical type such that

the corresponding ex post allocation rule Q̌(·, x̂, KA
0 , K

A
1 ) also globally pointwise maximizes

R(·, x̂). It follows from Theorem 2 that ω∗(KA
0 , K

A
1 ) = x̂A, as required.

We now suppose case (iii) applies and that KA
0 = 1 and KA

1 = N with ω∗(1, N−1) > x̂A.

Utilizing the machinery introduced in the proof of Lemma OA.3, notice that whenever K1 =

N , we must have q1(x̂,K) = 1 for any x̂ > x̂A and, consequently, ω∗(1, N) ≤ x̂A. Assume,

seeking a contradiction, that ω∗(1, N) < x̂A. Then, leveraging the arguments introduced for

case (ii), any critical type x̂ ∈ [ω∗(1, N), ω∗(1, N − 1)] is LA-feasible under the endowment

(1, N). Since x̂A ∈ [ω∗(1, N), ω∗(1, N − 1)], this implies that x̂A is LA-feasible under the

endowment (1, N). Moreover, the ex post allocation rule Q̌(·, x̂A, 1, N) that ensures LA-

feasibility of x̂A under (1, N) is also consistent with pointwise maximization of R(·, x̂A).

Consequently, ω∗(1, N) = x̂A. By Lemma 4, the critical worst-off type is unique in this

case, so this contradicts our initial assumption that ω∗(1, N) < x̂A. We therefore have

ω∗(1, N) = ω∗(KA
0 , K

A
1 ) = x̂A as required.

63To check this condition, construct an ex post allocation on [x(x̂), x(x̂)] such that buyers are allocated a
good with probability 1, with good 0 allocated wherever possible with probability γ, and good 1 allocated
wherever possible with probability 1−γ. LA-feasibility of x̂ under K requires the existence of some γ ∈ [0, 1]
such that the corresponding convex combination of extremal ex post allocations on [x(x̂), x(x̂)] yields an
interim allocation rule q̌(·, x̂,K) satisfying q̌0(x̂, x̂,K) = q̌1(x̂, x̂,K) = 1/2.

64This is always feasible because K0 +K1 ≥ N . Notice that if there are unserved buyers in [0, x(x̂)) (resp.
(x(x̂), 1]), then this implies that all buyers in the lottery interval are also allocated good 1 (resp. 0) and,
consequently, that the resulting allocation rule satisfies strong monotonicity.

65This reverses the logic in Section 4.3, where we first pointwise maximize R(·, x̂) and then check whether
x̂ is worst-off under the corresponding allocation rule. Here, we first construct a lottery-augmented auc-
tion such that x̂ is worst-off and then verify that the corresponding allocation is consistent with pointwise
maximization.
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Claim OA.2. If K0 +K1 ≥ N , then we have ω∗(K) = x̂A if and only if K ≥ (KA
0 , K

A
1 ).

Proof. Suppose that K0 + K1 ≥ N . We have already established that for any K such

that K � (KA
0 , K

A
1 ), we either have ω∗(K) < x̂A or ω∗(K) > x̂A. So it only remains to

show that we have ω∗(K) = x̂A whenever K ≥ (KA
0 , K

A
1 ). From Claim OA.1 we know

that ω∗(KA
0 , K

A
1 ) = x̂A. Utilizing the machinery introduced in the proof of Claim OA.1,

we now show that this in turn implies that ω∗(K) = x̂A holds whenever K ≥ (KA
0 , K

A
1 ).

In particular, since x̂A is LA-feasible under (KA
0 , K

A
1 ), it is LA-feasible under any K ≥

(KA
0 , K

A
1 ). Moreover, the ex post allocation rule that ensures the LA-feasibility of x̂A under

the endowment K is also consistent with pointwise maximizing R(·, x̂A). Thus, we have

ω∗(K) = x̂A as required.

This concludes the proof of Lemma OA.4.

The following figure updates our modified version of the panels of Figure 8 to include the

information that has been established up to this point.
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Lemma OA.5. Suppose v ≥ 1 + max {1/f(0), 1/f(1)} and K0 + K1 ≥ N . If K0 < KA
0 ,

then ω∗(K) < ω∗(K0 + 1, K1) ≤ x̂A and ω∗(K) = ω∗(K0, K1 + 1). If K1 < KA
1 , then

ω∗(K) > ω∗(K0, K1 + 1) ≥ x̂A and ω∗(K) = ω∗(K0 + 1, K1).

Proof. We focus on proving the first statement of this lemma, as the proof of the second

is analogous. In the course of proving Lemma OA.4, we have already established that

ω∗(K) < x̂A, ω∗(K0 + 1, K1) ≤ x̂A and ω∗(K) = ω∗(K0, K1 + 1) whenever K0 + K1 ≥ N

and K0 < KA
0 . Thus, it only remains to show that ω∗(K) < ω∗(K0 + 1, K1). Fixing the

critical type ω∗(K), we utilize our machinery from the proof of Lemma OA.3 and consider

how the allocation rule that pointwise maximizes the designer’s ironed virtual objective
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R(·, ω∗(K)) varies as the endowment increases from K to (K0 + 1, K1). Notice that the

critical type ω∗(K) is such that z0(ω
∗(K)) > z1(ω

∗(K)) and, under the endowment K,

buyers in the lottery interval are served with probability 1. Consequently, for any feasible

state (i, j) such that i > K0 or j ≥ N −K0, increasing the supply of good 0 by one unit does

not change the deterministic ex post allocation for buyers in the lottery interval. However,

for any feasible state (i, j) such that i ≤ K0 and j ≥ N − K0, increasing the supply of

good 0 by one unit ensures that the ex post lottery offered to buyers in the lottery interval

includes one less unit of good 1 and one additional unit of good 0. Putting all of this

together—and using the fact that q0(ω
∗(K),K) = q1(ω

∗(K),K) holds by construction,

because the corresponding optimal mechanism is a lottery-augmented auction—we have

q0(ω
∗(K), K0 + 1, K1) > q1(ω

∗(K), K0 + 1, K1). As we also noted in the proof of Lemma

OA.3, the functions q0 and q1 are decreasing and increasing in ω∗, respectively. Consequently,

taking q0(ω
∗(K), K0+1, K1) > q1(ω

∗(K), K0+1, K1) together with the fact that q0(ω
∗(K0+

1, K1), K0 + 1, K1) = q1(ω
∗(K0 + 1, K1), K0 + 1, K1) also holds by construction (since this is

again a lottery-augmented auction), we have ω∗(K) < ω∗(K0 + 1, K1), as required.

For completeness, the figure below updates our modified version of the panels of Figure 8

to include only the information that can be inferred from lemmas OA.3, OA.4 and OA.5, con-

tingent on knowing the point (KA
0 , K

A
1 ) (which can, of course, be determined by computing

the critical worst-off types for the set of balanced markets K such that K0 +K1 = N).
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With lemmas OA.3, OA.4 and OA.5 in hand, we are now in a position to prove Proposition

9.

Proof. We start with the simplest case where v ≥ 1 + max {1/f(0), 1/f(1)}. Under this re-
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striction, the statement of Proposition 9 follows immediately from combining the statements

of lemmas OA.3, OA.4 and OA.5. This is because by Lemma OA.2, the endpoints x(ω∗(K))

and x(ω∗(K)) of the lottery interval are increasing in ω∗—and strictly so away from the

lower bound of 0 on x(ω∗(K) and the upper bound of 1 on x(ω∗(K)). Consequently, the

starting prices s0(K, v) = v−x(ω∗(K)) and s1(K, v) = v− (1−x(ω∗(K))) are respectively

decreasing and increasing in ω∗—and strictly so away from the upper bound of v on these

prices. Therefore, provided we account for the upper bound on these prices, there is a one-

to-one correspondence between the comparative statics concerning the critical worst-off type

ω∗(K) and those concerning the starting prices s`(K, v).

More generally, the statement of Proposition 9 follows immediately from combining the

statements of lemmas OA.3, OA.4 and OA.5. As before, there is a one-to-one correspondence

between the comparative statics concerning ω∗(K) and those concerning s`(K, v). However,

in the general case, we must account for the constraint ω∗(K) ∈ [x̂0(v), x̂1(v)], which may

impose tighter upper bounds on the starting prices. This is what footnote 49 addresses when

computing the bounds s`(v).

OB Supporting calculations for Section 3.1

This online appendix derives the expressions for social surplus, consumer surplus and revenue

used in Section 3.1 and Figure 1.

Revenue For F (x) = x and v ≤ 1, the optimal reserves in independent auctions are

v/2. To compute expected revenue under independent optimal auctions for N = 2 and

K0 = K1 = 1, we use the interim allocation rule of these auctions, which is q0(x) = 1 − x
and q1(x) = 0 for x ≤ v/2, and q0(x) = 0 and q1(x) = x for x ≥ 1− v/2. Consequently, the

expected revenue is

RIA(v) = 2

[∫ v/2

0

(1− x)(v − 2x)dx+

∫ 1

1−v/2
x(v − 2 + 2x)dx

]
=
v2(6− v)

6
.

Given the ironed virtual types functions Ψ
δ

`(x, 1/2, v) and the expected interim allocations

q`(x), the expected revenue extracted from an agent under the optimal selling mechanism

when independent auctions are not optimal is 2
∫ 1

0
[q0(x)Ψ

δ

0(x, 1/2, v)+q1(x)Ψ
δ

1(x, 1/2, v)]dx,

where q`(x) are the interim allocations implied by the appropriately selected pointwise max-
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imizer. Under no disposal, the ironed virtual type functions for F (x) = x are

Ψ0(x, 1/2, v) =


v − 2x, x ∈ [0, 1/4))

v − 1
2
, x ∈ [1/4, 3/4]

v + 1− 2x, x ∈ (3/4, 1]

and Ψ1(x, 1/2, v) =


v − 1 + 2x, x ∈ [0, 1/4)

v − 1
2
, x ∈ [1/4, 3/4]

v − 2 + 2x, x ∈ (3/4, 1].

Observe that Ψ0(x, 1/2, v) ≥ 0 holds if and only if x ≤ (v + 1)/2 and Ψ1(x, 1/2, v) ≥ 0

holds if and only if x ≥ (1 − v)/2. Thus, with no disposal and v ≤ 1, the expected interim

allocations are q0(x) = (1−x) for x ∈
[
0, v+1

2

]
∩ [1/4, 3/4], q0(x) = 1/2 for x ∈ [1/4, 3/4] and

q0(x) = 0 otherwise; and q1(x) = x for x ∈
[
1−v
2
, 1
]
∩ [1/4, 3/4], q1(x) = 1/2 for x ∈ [1/4, 3/4]

and q1(x) = 0 otherwise. Straightforward calculations then reveal that the expected revenue

of lottery-augmented auctions under no disposal is R∗(v) = −15+36v+12v2−4v3
24

, which satisfies

R∗(1) = 29/24.

Under free disposal and F (x) = x, our calculations in Section 4.2 imply that

Ψ
FD

0 (x, 1/2, v) =


v − 2x, x ∈ [0, (v − z∗(v))/2)

z∗(v), x ∈ [(v − z∗(v))/2, 1− (v − z∗(v))/2]

v + 1− 2x, x ∈ (1− (v − z∗(v))/2, 1]

and

Ψ
FD

1 (x, 1/2, v) =


v − 1 + 2x, x ∈ [0, (v − z∗(v))/2)

z∗(v), x ∈ [(v − z∗(v))/2, 1− (v − z∗(v))/2]

v − 2 + 2x, x ∈ (1− (v − z∗(v))/2, 1]

,

where

z∗(v) =


0, v < 2−

√
2

√
4v − 2− v, v ∈ [2−

√
2, 3/4]

v − 1/2, v ∈ (3/4, 1]

.

Consequently, we have vLA = 2 −
√

2 ≈ 0.59. For v > vLA ≈ 0.59, the optimal selling

mechanism is a lottery-augmented auction whose interim expected allocations are as follows.

Assume first v ∈ [2 −
√

2, 3/4]. In this case, the ironing procedure is affected by the free

disposal constraint and the interim expected allocation are q0(x) = 1 − x for x < v−z∗(v)
2

,

q0(x) = 2+v−z∗(v)
4

for x ∈
[
v−z∗(v)

2
, 1− v

)
, q0(x) = 1/2 for x ∈ [1 − v, v] and q0(x) = 0
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for x > v; and q1(x) = 0 for x < 1 − v, q1(x) = 1/2 for x ∈ [1 − v, v], q1(x) = 2+v−z∗(v)
4

for x ∈
(
v, 2+v−z

∗(v)
4

]
and q1(x) = x for x > 2−v+z∗(v)

2
. Second, consider the case where

v ∈ (3/4, 1]. In this case, q0(x) = 1 − x for x ∈ [0, v] ∩ [1/4, 3/4], q0(x) = 1/2 for

x ∈ [1/4, 3/4] and q0(x) = 0 for v > 3/4; and q1(x) = x for x ∈ [1 − v, 1] \ [1/4, 3/4],

q1(x) = 1/2 for x ∈ [1 − v, v] and q1(x) = 0 for x > v. With these expressions in

hand, computing the expected revenue under the optimal mechanism with free disposal,

2
∫ 1

0
[q0(x)Ψ

FD

0 (x, 1/2, v) + q1(x)Ψ
FD

1 (x, 1/2, v)]dx, is straightforward. For v ∈ [2−
√

2, 3/4],

this revenue is R∗(v) = 1
3

(
2v3 − 12v2 + 2

(√
4v − 2 + 9

)
v −
√

4v − 2− 6
)

while for v > 3/4,

it is R∗(v) = 2
(
1
3
v((v − 3)v + 6)− 35

48

)
, which satisfies R∗(1) = 29

24
(i.e., at v = 1 free disposal

no longer constrains the mechanism).

Social surplus Now consider social surplus. Under independent optimal auctions, social

surplus SSIA(v) is

SSIA(v) = 2

[∫ v/2

0

(1− x)(v − x)dx+

∫ 1

1−v/2
x(v − 1 + x)dx

]
=

9− 2v

6
v2.

The derivation of this expression is similar to that of RIA(v), with virtual types replaced by

v − x and v − (1− x).

Social surplus under lottery-augmented auctions, which are optimal for v ≥ vLA, is

SS∗(v) = 2

∫ 1

0

[q0(x)(v − x)dx+ q1(x)(v − (1− x))]dx,

where the interim expected allocations depend on v and on whether free disposal is possible.

Under no disposal, we have SS∗(v) = −3
8

+ v + v2 − v3

3
for v ∈ [1/2, 1]. With free disposal,

we have SS∗(v) = 6−5
√
−2+4v−2v(12−11

√
−2+4v+4v(−6+v+3

√
−2+4v))

12
for v ∈ [2 −

√
2, 3/4] and

SS∗(v) = 2v2 − 2
3
v3 − 1

48
for v ∈ (3/4, 1].

Consumer surplus Consumer surplus under independent optimal auctions is

CSIA(v) = 2

[∫ v/2

0

(1− x)(x)dx+

∫ 1

1−v/2
x(1− x)dx

]
=

3− v
6

v2,

because (v−x−(v−2x)) = x is the difference between the willingness to pay and the virtual

type for an agent with x ≤ v/2 who consumes good 0 and (v− (1−x)− (v−2+2x)) = 1−x
is the same difference for an agent with x ≥ 1− v/2 who consumes good 1, while 1− x and

x are the respective interim expected allocations.
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Consumer surplus, CS∗(v), under the optimal selling mechanism when independent auc-

tions are not optimal can be computed similarly by subtracting Ψ
δ

0(x, 1/2, v) from v − x

for types who are allocated good 0 and subtracting Ψ
δ

1(x, 1/2, v) from v − (1− x) for types

who are allocated good 1. With no disposal, consumer surplus under the lottery-augmented

auctions is CS∗(v) = 1
4
− 1

6
v(3 + (−3 + v)v). With free disposal, we have

CS∗(v) = −1

6
v
(
8v2 + 12

(√
4v − 2− 4

)
v − 7

√
4v − 2 + 48

)
− 1

6

√
v − 1

2
+

5

2

for v ∈ [2−
√

2, 3/4] and CS∗(v) = 2
(
17
24
− 2

3
v((v − 3)v + 3)

)
for v ∈ (3/4, 1].

Revenue under efficient auctions with N = 3 The expected revenue for the optimal

mechanism with N = 2 has been derived above. We are left to derive the expected revenue

for efficient auctions with N = 3.

For the efficient mechanism with N = 3 buyers, we first compute the maximum revenue

generated from selling good 0. This derivation assumes the dominant strategy implemen-

tation and, in a first step, abstracts from participation fees. We know this good is sold

whenever x(1) < v and the highest price that the designer can charge the lowest type is

max{0, v − x(2)}, where x(i) denotes the ith lowest of the N = 3 draws. So the revenue

is given by E[1(x(1) < v) max{0, v − x(2)}]. The joint density of (x(1), x(2)) being given by

6(1− x(2)), the revenue is
∫ v
0

∫ v
x(1)

6(v − x(2))(1− x(2))dx(2)dx(1) = v3 − v4/2. By symmetry,

the designer’s revenue from selling both goods is twice as much, that is, 2v3 − v4.
However, this leaves money on the table because the interim worst-off type x = 1/2

nets a positive surplus. To maximize revenue, we now make the IR constraint bind for the

worst-off type by introducing a participation fee. We start by computing the gross payoff

associated with the consumption of good 0 for the worst-off type at x = 1/2. This type

obtains good 0 with probability 1/4, and conditional on this type obtaining good 0, the

other two types are uniformly distributed on [1/2, 1]. The density of the minimum of these

random variables, denoted y, is 8(1− y). The associated interim payoff for type x = 1/2 is

thus 2
∫ 1

1/2
(v − 1/2−max{0, v − y})(1− y) dy = −7/24 + v − v2 + v3/3. The total interim

payoff for type x = 1/2 is twice this (since by symmetry this type derives an equal payoff

from the other good). Multiplying by a factor of six, we get the total revenue adjustment

due to participation fees (since there are two goods and three buyers). The resulting revenue

with N = 3, K0 = K1 = 1 and F (x) = x is therefore −7/4 + 6v − 6v2 + 4v3 − v4. This is

the maximum revenue under efficient auctions, subject to interim individual rationality. As

stated in footnote 23, under no disposal and for v < 0.58475, this is less than revenue R∗(v)

under the optimal mechanism with N = 2 and K0 = K1 = 1.
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Interestingly, whenever v < 0.526596, expected revenue under two independent auctions

with two buyers is RIA(v) = v2(6 − v)/6, which is larger than the revenue from efficient

auctions with three buyers. (For v < 1/2, similar to the independent auctions, the efficient

auctions with three buyers cannot charge any participation fees because none of the types

x ∈ (v, 1− v) participate in them.)

OC Supporting calculations for figures 6 and 7

In this appendix, we provide the calculations underlying figures 6 and 7. Assuming no

disposal, we compute, for any critical type x̂ ∈ [x̂0(v), x̂1(v)] ∩ (0, 1), the interim allocation

q(x̂, x̂) for any agent that reports a type x ∈ [x(x̂), x(x̂)] under the ex post allocation rules

that pointwise maximizes R(·, x̂). To achieve this, we leverage the machinery introduced in

the proof of Proposition 9. We let Q`(i, j, x̂) denote the probability that a given buyer is

allocated good ` ∈ {0, 1} when reporting type x ∈ [x(x̂), x(x̂)], conditional on i ≥ 0 other

buyers reporting types below x(x̂) and j ≥ 0 reporting types above x(x̂), under the ex post

allocation rule that pointwise maximizes R(·, x̂). The probability p(i, j, x̂) of any feasible

state (i, j) ∈ {0, 1, . . . , N − 1}2 with i + j ≤ N − 1, is then computed in (19), while the

interim allocation q(x̂, x̂) rule can then be computed via

q`(x̂, x̂) =
N−1∑
i=0

N−1−i∑
j=0

p(i, j, x̂)Q`(i, j, x̂). (20)

In light of (20), it suffices to compute the ex post allocations Q`(i, j, x̂) for all feasible states

(i, j) ∈ {0, 1, . . . , N − 1}2 with i + j ≤ N − 1. To systematically cover all cases, we follow

the approach in the proof of Proposition 9 and separately consider cases involving scarcity

(i.e., cases where K0 +K1 ≤ N) and abundance (i.e., cases where K0 +K1 > N).

Scarcity Whenever K0 + K1 ≤ N—that is, there are weakly fewer goods than agents—

we can independently compute the pointwise maximizing allocation rules Q0 and Q1 by

allocating units of each good to agents according to their priority under the ironed virtual

type functions (breaking ties that arise in the ironing interval uniformly at random) because,

under scarcity, this procedure cannot result in the designer allocating two goods to a single

agent.

We begin with critical types x̂ ∈ [x̂0(v), x̂1(v)] ∩ (0, 1) such that z0(x̂, v), z1(x̂, v) > 0.

In each feasible state (i, j), the seller’s preferences, as encoded by the ironed virtual type

functions Ψ0 and Ψ1, together with the feasibility constraints then uniquely pin down the ex
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post lottery offered to buyers that report a type in the ironing interval. In this case, the seller

strictly prefers to serve buyers in the ironing interval either good whenever this is feasible

(i.e., if any goods remain after first allocating the units of good 0 to the i buyers that reported

a type x < x(x̂) and the units of good 1 to the j buyers that reported a type x > x(x̂)).

Moreover, whenever the buyers in the ironing interval are entered into a non-trivial lottery

(i.e., one involving goods from both locations), there are always weakly fewer goods than

buyers involved in the lottery. Consequently, the pointwise maximizing ex post allocation

rules are unique (up to a set of measure zero) and we have Q0(i, j, x̂) = K0−i
N−i−j1(i < K0, j <

N −K0) +1(j ≥ N −K0) and Q1(i, j, x̂) = K1−j
N−i−j1(i < N −K1, j < K1) +1(i ≥ N −K1).

66

Next, we consider the case where x̂ = x̂`(v) for some ` ∈ {0, 1}. If x̂`(v) ∈ {0, 1}, then

Theorem 2 shows that x̂ cannot satisfy the saddle point condition. So suppose x̂`(v) /∈ {0, 1},
which implies that z−`(x̂, v) = 0. In this case, the seller allocates good ` to buyers in the iron-

ing interval whenever this is feasible. However, the seller is now indifferent between serving

the buyers in the ironing interval good −` and not serving these buyers. Consequently, there

is not a sunique pointwise maximizing ex post allocation rule. However, any ex post lottery

offered by the seller to buyers in the ironing interval under pointwise maximization can be

characterized as a convex combination of two extremal lotteries: One which allocates good `

to as many buyers in the ironing interval as possible and then serves none of the remaining

buyers, and one which allocates good ` to as many buyers in the ironing interval as possible

and then allocates good −` to as many of the remaining buyers as possible. Utilizing the

expressions from the previous case, it is straightforward to compute the corresponding set

of pointwise maximizing ex post allocation rules.

Putting all of this together, the following functions specify the pointwise-maximizing al-

location rules for all critical types x̂ ∈ [x̂0(v), x̂1(v)]∩(0, 1) that are candidates for the critical

worst-off type ω∗ under scarcity. In particular, for all feasible states (i, j) ∈ {0, 1, . . . , N−1}2

such that i+ j ≤ N − 1, critical types x̂ ∈ [x̂0(v), x̂1(v)] ∩ (0, 1) and γ ∈ [0, 1], we have

Q0(i, j, x̂) =


K0−i
N−i−j1(i < K0, j < N −K0) + 1(j ≥ N −K0), x̂ ∈ [x̂0(v), x̂1(v)) ∩ (0, 1)

γ
(

K0−i
N−i−j1(i < K0, j < N −K0) + 1(j ≥ N −K0)

)
, x̂ = x̂1(v) < 1

,

Q1(i, j, x̂) =

γ
(

K1−j
N−i−j1(i < N −K1, j < K1) + 1(i ≥ N −K1)

)
, x̂ = x̂0(v) > 0

K1−j
N−i−j1(i < N −K1, j < K1) + 1(i ≥ N −K1), x̂ ∈ (x̂0(v), x̂1(v)] ∩ (0, 1)

.

66To see this, notice that Q0(i, j, x̂) > 0 holds if any only if i < K0. Moreover, we have Q0(i, j, x̂) = 1 if and
only if i+N − i− j < K0. Consequently, we have Q0(i, j, x̂) = K0−i

N−i−j ∈ (0, 1) if and only if i < K0 and j <

N−K0. Combining all of these cases then yields Q0(i, j, x̂) = K0−i
N−i−j1(j < N−K0, i < K0)+1(j ≥ N−K0)

as required. A similar argument shows that Q1(i, j, x̂) = K1−j
N−i−j1(i < N −K1, j < K1) + 1(i ≥ N −K1).
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Abundance We now suppose that K0 +K1 > N . Since the designer now has more goods

than agents, the pointwise maximizing allocation rules Q0 and Q1 cannot be computed

independently. Instead, we can exploit the fact that Q0(i, j, x̂) +Q1(i, j, x̂) = 1 holds for all

feasible states (i, j) and critical types x̂ ∈ [x̂0(v), x̂1(v)] ∩ (0, 1).

We begin with critical types x̂ ∈ [x̂0(v), x̂1(v)] ∩ (0, 1) such that z0(x̂, v), z1(x̂, v) > 0.

Since we have K0 + K1 > N , this means the seller will optimally serve any buyer that

reports a location within the ironing interval. However, because there are more total units

than agents, the feasibility constraints do not immediately pin down the ex post lottery

offered to these buyers. Therefore, we must consider several further subcases.

First, if z0(x̂, v) > z1(x̂, v) > 0 (or, equivalently, if x̂ ∈ (x̂0(v), x̂A)), then the seller

allocates the units of good 0 to as many buyers in the ironing interval as possible (i.e., after

first giving the i buyers that reported x < x(x̂) a unit of good 0), before then allocating

units of good 1 to any remaining buyers. Consequently, there is a unique ex post allocation

rule that pointwise maximizes R(·, x̂) subject to the feasibility constraints, and we have

Q0(i, j, x̂) = K0−i
N−i−j1(i < K0, j < N−K0)+1(j ≥ N−K0) and Q1(i, j, x̂) = 1−Q0(i, j, x̂).67

Second, if z1(x̂, v) > z0(x̂, v) > 0 (or, equivalently, if x̂ ∈ (x̂A, x̂1)), then the seller

allocates the units of good 1 to as many buyers in the ironing interval as possible (i.e., after

first giving the j buyers that reported x > x(x̂) a unit of good 1), before then allocating units

of good 0 to any remaining buyers. Consequently, there is again a unique ex post allocation

rule that pointwise maximizes R(·, x̂) subject to the feasibility constraints, and we have

Q0(i, j, x̂) = N−K1−i
N−i−j 1(i < N −K1, j < K1) + 1(j ≥ K1) and Q1(i, j, x̂) = 1−Q0(i, j, x̂).68

Third, if z0(x̂, v) = z1(x̂, v) > 0 (or, equivalently, if x̂ = x̂A), then the seller is indifferent

between giving buyers in the ironing interval a unit of good 0 and a unit of good 1. In contrast

to the two previous subcases, the seller’s preferences (as encoded by the ironed virtual type

functions Ψ0 and Ψ1) together with the feasibility constraints do not immediately pin down

a unique ex post allocation for buyers in the ironing interval. Nevertheless, without loss

of generality we can parameterize the continuum of ex post allocation rules that pointwise

maximize R(·, x̂) by taking convex combinations of two extremal lotteries: One where the

seller allocates the units of good 0 to as many buyers in the ironing interval as possible

(which corresponds to the lottery the seller constructs whenever z0(x̂, v) > z1(x̂, v) > 0) and

one where the seller allocates the units of good 1 to as many buyers in the ironing interval as

67Since the feasibility constraint for good 0 uniquely pins down Q0, similarly to the scarcity case, we have
Q0(i, j, x̂) = K0−i

N−i−j1(i < K0, j < N − K0) + 1(j ≥ N − K0). However, unlike under the case involving

scarcity, we now have Q1(i, j, x̂) = 1−Q0(i, j, x̂).
68Since the feasibility constraint for good 1 now uniquely pins down Q1, similarly to the scarcity case, we

have Q1(i, j, x̂) = K1−j
N−i−j1(i < N −K1, j < K1) + 1(i ≥ N −K1). Using Q0(i, j, x̂) = 1 − Q1(i, j, x̂) then

yields Q0(i, j, x̂) = N−K1−i
N−i−j 1(i < N −K1, j < K1) + 1(j ≥ K1) as required.
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possible (which corresponds to the lottery the seller constructs whenever z1(x̂, v) > z0(x̂, v) >

0). Utilizing the expressions from the previous subcases, under the first of these extremal

lotteries we have

Q0(i, j, x̂A; 1) = K0−i
N−i−j1(i < K0, j < N −K0) + 1(j ≥ N −K0) =

0, i ≥ K0

min
{

K0−i
N−i−j , 1

}
, i < K0

,

and under the second we have

Q0(i, j, x̂A; 0) = N−K1−i
N−i−j 1(i < N −K1, j < K1) + 1(j ≥ K1) =

0, i ≥ N −K1

min
{
N−K1−i
N−i−j , 1

}
, i < N −K1

.

Taking a convex combination of these two expressions, for all γ ∈ [0, 1], the allocation rules

Q0(i, j, x̂A) = γmin
{

K0−i
N−i−j , 1

}
1(i < K0) + (1− γ) min

{
N−K1−i
N−i−j , 1

}
1(i < N −K1). (21)

and Q1(i, j, x̂A) = 1−Q0(i, j, x̂A) then pointwise maximize R(·, x̂) when x̂ = x̂A.

Next, we consider the case where x̂ = x̂`(v) for some ` ∈ {0, 1}. If x̂`(v) ∈ {0, 1}, then, as

previously noted, x̂ cannot satisfy the saddle point condition, so we again restrict attention

to the case where x̂`(v) /∈ {0, 1}, which implies that z−`(x̂, v) = 0. Here, the analysis is

analogous to the same case involving scarcity and any ex post lottery offered by the seller

to buyers in the ironing interval under pointwise maximization can, again, be characterized

as a convex combination of two extremal lotteries: One which allocates the units of good `

to as many buyers in the ironing interval as possible and then serves none of the remaining

buyers and one which allocates the units of good ` to as many buyers in the ironing interval

as possible and then allocates units of good −` to all remaining buyers.

Putting all of this together, the following functions specify the full set of pointwise maxi-

mizing ex post allocation rules for each critical type x̂ that is a candidate for the critical worst-

off type ω∗ under abundance. In particular, for all feasible states (i, j) ∈ {0, 1, . . . , N − 1}2
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such that i+ j ≤ N − 1, critical types x̂ ∈ [x̂0(v), x̂1(v)] ∩ (0, 1) and γ ∈ [0, 1], we have

Q0(i, j, x̂) =



K0−i
N−i−j1(i < K0, j < N −K0) + 1(j ≥ N −K0), x̂ ∈ [x̂0(v), x̂A) ∩ (0, 1)

Q0(i, j, x̂A), x̂ = x̂A
N−K1−i
N−i−j 1(i < N −K1, j < K1) + 1(j ≥ K1), x̂ ∈ (x̂A, x̂1(v)) ∩ (0, 1)

γ
(
N−K1−i
N−i−j 1(i < N −K1, j < K1) + 1(j ≥ K1)

)
, x̂ = x̂1(v) < 1

,

Q1(i, j, x̂) =

γ
(
1−Q0(i, j, x̂0)

)
, x̂ = x̂0(v) > 0

1−Q0(i, j, x̂), x̂ ∈ (x̂0(v), x̂1(v)] ∩ (0, 1)
,

where Q0(i, j, x̂A), which also depends on γ, is as defined in (21).

OD Robustness of lotteries

In this appendix, we show that lotteries remain part of the optimal mechanism if the designer

maximizes a convex combination of revenue and social surplus and if transportation costs

are not linear. For simplicity, all extensions assume that v ≥ 1 + max {1/f(0), 1/f(1)} and

K0 + K1 ≥ N so that we have full market coverage under the optimal selling mechanism.

With non-linear transportation costs, we further assume that N = K0 = K1 = 1 and

F (x) = x.

Preliminaries: Full market coverage. Let q(x) := q0(x) and q1(x) = 1 − q(x) (and

Q(x) = Q0(x) and Q1(x) = 1 − Q(x)). The monotonicity constraint implied by incentive

compatibility then reduces to the requirement that q is decreasing, and expected revenue

then becomes

R(Q, T ) = N

[∫ 1

0

q(x)Ψ(x, x̂) dF (x) + x̂+ v − 1− u(x̂)

]
, (22)

where x̂ ∈ [0, 1] is an arbitrarily chosen critical type and the virtual type function Ψ(x, x̂) :=

Ψ0(x, x̂, v) − Ψ1(x, x̂, v) = (1 − 2ψS(x))1(x ≤ x̂) + (1 − 2ψB(x))1(x > x̂) captures the net

revenue gain from allocating type x a unit of good 0 rather than a unit of good 1. Accordingly,
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the ironed virtual type function Ψ associated with Ψ is given by

Ψ(x; x̂) =


1− 2ψS(x), x ∈ [0, x(x̂))

z(x̂), x ∈ [x(x̂), x(x̂)]

1− 2ψB(x), x ∈ (x(x̂), 1]

,

where z(x̂) = z0(x̂, v)− z1(x̂, v).

Ramsey objective. We now provide a sketch of the arguments for why lotteries remain

part of the optimal mechanism for a designer who maximizes a weighted sum of revenue

and social surplus, provided the weight on revenue is greater than 0. To that end, under

full market coverage expected social surplus SS(Q, T ) under any direct incentive compatible

mechanism (Q, T ) is given by SS(Q, T ) = N
∫ 1

0
q(x)(v−x) + (1− q(x))(v− (1−x))dF (x) =

N
(
v − 1 + E[x] +

∫ 1

0
q(x)(1− 2x)dF (x)

)
. Expected revenue R(Q, T ) is computed in (22).

For α ∈ [0, 1], the designer’s problem is to then maximize the Ramsey objective

Wα(Q, T ) := αR(Q, T ) + (1− α)SS(Q, T )

over (Q, T ). Letting ψαS(x) := x + αF (x)
f(x)

, ψαB(x) := x − α 1−F (x)
f(x)

and Ψα(x, x̂) := (1 −
2ψαS(x))1(x ≤ x̂) + (1− 2ψαB(x))1(x > x̂), we have

Wα(Q, T ) = N

(
v − 1 + (1− α)E[x] + α(x̂− u(x̂)) +

∫ 1

0

q(x)Ψα(x, x̂)dF (x)

)
.

All the preceding analysis then carries over to this generalization, with Ψ(x, x̂) replaced by

Ψα(x, x̂). Observe in particular that for any α > 0, Ψα(x, x̂) increases at x = x̂, implying

that there is a need for ironing for any α > 0. Notice also that ψαS(x) increases in α and

ψαB(x) decreases in α and, consequently, 1 − 2ψαS(x) decreases and 1 − 2ψαB(x) increases in

α. This in turn implies that, as α decreases, the ironing interval [xα(x̂), xα(x̂)] shrinks in a

set inclusion sense. So although the lottery interval shrinks in a set-inclusion sense as the

designer places less weight on revenue, there is still a lottery involving a positive measure of

types under the optimal selling mechanism whenever α > 0.

Non-linear transportation costs. We are now going to show that the optimality of

lotteries does not depend on the assumption either that buyers’ transportation costs are

linear by studying a model with quadratic transportation costs. As we will see, the behavior

of this model is surprisingly similar to that with linear transportation costs. The only
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essential change is that the allocation rule in the ironing interval is no longer a constant

fifty-fifty lottery. Rather, the probability of obtaining good 1 is increasing in the type.

Specifically, we now assume quadratic transportation costs, uniformly distributed types,

N = K0 = K1 = 1 and that v ≥ 3 (which ensures full market coverage is optimal). To

apply standard results such as single-crossing without relabelling types, we now let q0(x) =

1− q1(x). We then have

V (q1, x) = (1− q1)(v − x2) + q1(v − (1− x)2) = q1(2x− 1) + v − x2.

Incentive compatibility requires that q1(x)(2x−1)+v−x2−t(x) ≥ q1(x̂)(2x−1)+v−x2−t(x̂)

and q1(x)(2x̂ − 1) + v − x̂2 − t(x) ≤ q1(x̂)(2x̂ − 1) + v − x̂2 − t(x̂). Subtracting the latter

inequality from the former yields q1(x)(2x−1)−q1(x)(2x̂−1) ≥ q1(x̂)(2x−1)−q1(x̂)(2x̂−1).

Rearranging, we have 2q1(x)(x− x̂) ≥ 2q1(x̂)(x− x̂). This inequality is satisfied if and only if

q1 is (weakly) increasing. Notice also that V (q1,x)
∂q1∂x

= 2 > 0. Consequently, the Spence-Mirrlees

single crossing property holds and q1 can be implemented using an incentive compatible direct

mechanism if and only if q1 is increasing. Let u(x, x̂) = q1(x̂)(2x − 1) + v − x2 − t(x̂) and

u(x) = u(x, x). Applying the envelope theorem, we have

u(x) = u(x̂) +

∫ x

x̂

(2q1(y)− 2y) dy, (23)

where x̂ ∈ [0, 1] is an arbitrarily chosen critical type. By definition we also have u(x) =

q1(x)(2x − 1) + v − x2 − t(x). Combining this with (23) and solving for t(x) then yields

t(x) = q1(x)(2x− 1) + v− x2− u(x̂)−
∫ x
x̂

(2q1(y)− 2y) dy. The designer’s revenue under any

direct mechanism 〈q1, t〉 is therefore

R(q1, t) =

∫ 1

0

(
q1(x)(2x− 1) + v − x2 − u(x̂)−

∫ x

x̂

(2q1(y)− 2y) dy

)
dx

=

∫ 1

0

(
q1(x)(2x− 1)− 2

∫ x

x̂

q1(y) dy

)
dx+ v − x̂2 − u(x̂).

Using
∫ 1

0

∫ x
x̂
q1(y) dy dx =

∫ 1

x̂
q1(y)(1 − y) dy −

∫ x̂
0
q1(y)y dy, the designer’s revenue becomes

R(q1, t) =
∫ 1

x̂
(2x− 1− 2(1− x)) q1(x) dx +

∫ x̂
0

(2x − 1 + 2x)q1(x) dx + v − x̂2 − u(x̂) =∫ 1

x̂
(4x − 3)q1(x) dx +

∫ x̂
0

(4x − 1)q1(x) dx + v − x̂2 − u(x̂). Introducing the virtual type

function Ψ(x, x̂) = (4x − 1)1(x < x̂) + (4x − 3)1(x ≥ x̂) we can rewrite this as R(q1, t) =∫ 1

0
Ψ(x, x̂)q1(x) dx+ v − x̂2 − u(x̂). Once again we have a non-regular problem and we iron
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the virtual type function. For any x̂ ∈ (0, 1). We have

Ψ(x, x̂) =


4x− 1, x ∈ [0, x(x̂))

z(x̂), x ∈ [x(x̂), x(x̂)]

4x− 3, x ∈ (x(x̂), 1]

,

where x(x̂) = max
{

1−z(x̂)
4

, 0
}

, x(x̂) = min
{

3−z(x̂)
4

, 1
}

and

z(x̂) =


4
√
x− 3, x̂ ∈

[
0, 1

4

)
4x̂− 2, x̂ ∈

[
1
4
, 3
4

]
3− 4

√
1− x̂, x̂ ∈

(
3
4
, 1
] .

The saddle point theorem still applies to this problem, and we can use it to show that

ω∗ = 1
2
. In particular, if we set x̂ < 1

2
so that z(x̂) > 0 and pointwise maximize the

ironed virtual surplus function, then we have a worst-off type of ω = 3
4
6= x̂. So setting

x̂ < 1
2

cannot satisfy the saddle point condition. Similarly, if we set x̂ > 1
2

then we have

z(x̂) < 0 which yields a worst-off type of ω = 1
4
6= x̂ under pointwise maximization of

the designer’s ironed virtual surplus function. So we must have a critical worst-off type

of ω∗ = 1
2
. Setting x̂ = 1

2
in our expression for the ironed virtual type function we have

Ψ
(
x, 1

2

)
= (4x− 1)1(x ∈

[
0, 1

4

)
) + (4x− 3)(x ∈

(
3
4
, 1
]
). Since z

(
1
2

)
= 0, any allocation rule

q (x) = q`(x)1(x ∈
[
1
4
, 3
4

]
) + 1(x ∈

(
3
4
, 1
]
),

with q` :
[
1
4
, 3
4

]
→ [0, 1] increasing pointwise maximizes the designer’s ironed virtual surplus

function. The pointwise maximizing allocation rule that makes all types in the ironing

interval worst-off satisfies U ′(x) = 2q`(x) − 2x = 0, which yields q`(x) = x. Clearly, this

allocation rule satisfies the saddle point condition since ω∗ = 1
2

is then a worst-off type.

In summary, this analysis shows that the optimality of lotteries does not rely on the

assumption of linear transportation costs and that, moreover, the saddle point and ironing

machinery apply beyond the case of linear transportation costs.
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