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Abstract

Consignment auctions are two-stage mechanisms to (re)-allocate emission permits.

Firms are first endowed with permits and then allowed to trade them. We deter-

mine theoretically endowments that enable efficient allocation, subject to incentive

compatibility, individual rationality, and no deficit. All firms prefer efficient consign-

ment auctions to efficient standard auctions, making them politically palatable. Firms’

investment incentives align with the first-best in efficient consignment auctions. Grand-

fathering based on efficient long-run allocations induces efficiency-permitting endow-

ments. A simple calibration to data from Southern California’s RECLAIM program

validates our no-deficit assumption and shows that grandfathering provides the best

theoretical match for the empirically observed endowments.
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1 Introduction

Markets for emission permits often involve a central authority that first endows firms with

permits and then allows these firms to trade those permits in a secondary market into

which the authority may sell additional permits. Customarily, these markets are called

consignment auctions or cap-and-trade systems. From a theoretical perspective, consignment

auctions raise the question of why such two-stage procedures are employed rather than simply

auctioning off the permits in the first place, thereby avoiding problems associated with the

impossibility of efficient secondary markets as emphasized by Vickrey (1961) and Myerson

and Satterthwaite (1983).1 Given that a consignment auction is to be used, the question

of how initial endowments should be chosen is of considerable practical relevance. The

appropriateness of determining endowments based on historical allocations, often referred to

as grandfathering, is being debated, and questions arise regarding how permit markets affect

firms’ incentives to invest in abatement technologies.2

In this paper, we analyze an independent private values model that allows us to respond

to these questions within a framework in which transaction costs, like in the work of Vickrey

and Myerson and Satterthwaite, arise from agents’ private information. The model assumes

that all firms have privately known marginal values for permits. These values are drawn

independently from continuous distributions and are constant up to a maximum demand.

Distributions and maximum demands are common knowledge among the firms and the cen-

1Of course, reallocation mechanisms such as the “incentive auction” (see e.g., Milgrom,

2017) are sensible in the presence of unforeseen and unforeseeable technological change, in

which case resources cannot be allocated efficiently in the first place; see also Loertscher

et al. (2015). However, this is not the case here because the reallocation mechanism could

be dispensed with if an efficient primary market mechanism were used.

2See, for example, Cramton and Kerr (2002), Burtraw and McCormack (2017), and Hahn

and Stavins (2011).
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tral authority, as is the fact that marginal values are constant.

We first show that for any allocation problem of this form, there always exists a vector

of endowments such that first-best (ex post efficient) reallocation can be achieved while

respecting the firms’ incentive compatibility and interim individual rationality constraints

without running a deficit.3 We also show that the total revenue extracted from the firms

decreases in the share of permits with which they are endowed, which provides an explanation

for why these schemes are used in the first place—they are politically more palatable than

pure auctions because they tax the firms less.4 Moreover, if the allocation mechanism always

achieves the first-best, then each firm’s incentive to invest in abatement technologies aligns

with those of a designer that is interested in social surplus maximization. Hence, within this

framework, any argument about suboptimal investment incentives must involve an argument

as to why the secondary market is not efficient.

Our analysis allows us to relate grandfathering schemes to endowments that permit first-

best reallocation via the secondary market. In a stationary environment and abstracting

away from incentives to boost consumption to increase endowments in the future, endowing

each firm with its long-run average consumption allows the secondary market to achieve

the first-best without running a deficit on average if the past allocations were efficient. The

3Respecting individual rationality constraints is a natural requirement when trade and

participation are voluntary as is the case, for example, in the secondary market in Southern

California’s RECLAIM scheme (see Section 4). But even when, in principle, the agents could

be coerced to participate, such as in public good problems, respecting individual rationality is

sensible because it guarantees political acceptance of the scheme by safeguarding the agents;

see Hellwig (2003) for an insightful discussion.

4The issue of the need for political buy-in is raised by Hahn and Shapiro (2011), who

mention the possibility of “leaving it up to the legislature to construct a constituency in

support of the program by allocating the allowances to various interests” (Hahn and Shapiro,

2011, p. S267).
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model thus provides a theoretical rationale for grandfathering.5 We also analyze endowments

when firms can be overendowed, that is, in the first stage some firms may obtain permits in

excess of their maximum demands.

A simple calibration of our model to data from the RECLAIM nitrogen oxides (NOx) and

sulfur oxides (SOx) permit market in Southern California, which were collected and analyzed

by Fowlie and Perloff (2013), validates our assumption that the reallocation mechanism does

not run a deficit. Specifically, given the estimated distributions and empirical endowments,

the computed revenue is always positive. The calibration also shows that of the theoretical

endowments we derive, those under grandfathering are the best match to the empirical

ones, both when measured by the revenue generated and by the dissimilarities among the

distributions of endowments. Further, our empirical analysis provides some evidence of

overendowments and thereby support for the empirical relevance of this possibility.

There is a rich body of literature on emission trading. Xiong et al. (2017) provide an

overview of the carbon allowance allocation mechanisms used in the EU and California and

in China’s pilot programs. Grandfathering is used in the early stages of these programs,

for reasons such as political palatability and lack of data.6 The analysis in our paper gives

an efficiency justification to using grandfathering: it achieves efficient reallocation of the

carbon permits even when the authority lacks data on the individual emission abatement

costs. Busch et al. (2018) raise concerns that free allocation using grandfathering can lead

to thin secondary markets and poor carbon price discovery, but recognizes that using a

centralized consignment auction addresses the thin market problem. Our paper furthers

the analysis by showing that grandfathering is not the cause of a thin secondary market.

5To our knowledge, Segal and Whinston (2011) were the first to observe that what

amounts to grandfathering in consignment auctions can achieve the first-best.

6Grandfathering can be viewed as driven by a lack of data insofar as the designer does

not need to know the distributions from which the agents draw their types. It suffices to

observe average consumption from historical data.
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Besides grandfathering, benchmarking—allocating permits to firms according to observable

characteristics such as their industrial sector and production technology—is used as another

method to determine the initial allocation of carbon allowances (Xiong et al., 2017; Goulder

and Morgenstern, 2018; Pizer and Zhang, 2018). We determine theoretically the optimal

endowments when the firms belong to strength-ordered groups, where all firms within a given

group have the same maximum demand and draw their values from the same distribution,

with firms in stronger groups having larger maximum demands and first-order stochastically

dominant distributions. This resonates with the benchmarking idea because agents within

each group are treated equally, with the benchmark used for each group stemming from the

distribution of the abatement costs of that group. Our calibration exercise is also based on

a specification with heterogeneous groups, with firms within each group having the same

distribution and the same maximum demand.

Related to consignment auctions, some prior literature dismisses the relevance of initial

endowments by referencing Coase theorem arguments (see, e.g., Montgomery, 1972). But, of

course, transaction costs remain a feature of the real world,7 as well as a feature of theoretical

models, including ours, in which transaction costs arise from agents’ private information.

Recent theoretical analyses of consignment auctions include Khezr and MacKenzie (2018)

and Liu and Tan (2021), who study consignment auctions with a uniform price assuming,

respectively, constant common values and decreasing private values. Our paper departs from

this approach by focusing on efficient, incentive compatible mechanisms, which by Holmström

(1979) means focusing on Groves’ mechanisms. Making the interim individual rationality

constraint binding so as not to “leave money on the table,”8 this further narrows down the

7Hahn and Shapiro (2011) note the violation of conditions for the Coase theorem in

the context of cap-and-trade systems, saying that they may be violated “when there are

transaction costs, when firms have market power, and when firms are subject to differential

regulatory treatment” (Hahn and Shapiro, 2011, p. S267).

8That is the interim individual rationality constraint of each agent is binding when eval-
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mechanism to the Vickrey-Clarke-Groves (VCG) mechanism (see Vickrey, 1961; Clarke, 1971;

Groves, 1973). While our approach is more abstract, it allows us to connect consignment

auctions to the mechanism design literature on partnership dissolution and asset markets,

initiated by Cramton et al. (1987) with subsequent contributions by Lu and Robert (2001),

Che (2006), Figueroa and Skreta (2012), Loertscher and Wasser (2019), and Loertscher and

Marx (2020). This permits us to relate the efficient operation of the secondary market to the

initial endowments, make statements about the optimal endowments and grandfathering,

and discuss investment incentives.

Our paper is also related to Loertscher and Marx (2020) and Delacrétaz et al. (2022),

which study, respectively, trade sacrifice and efficient mechanisms for asset markets and

focus on dominant strategies and ex post individual rationality. Delacrétaz et al. (2022)

show that there is never a budget surplus under efficiency. Thus, our possibility results

derive from the fact that we only require interim individual rationality. Finally, the simple

status quo that ensures voluntary participation in efficient bargaining derived by Segal and

Whinston (2011) is equivalent to grandfathering. From a theoretical perspective, our paper

adds to this conditions—for example, two agents and identical distributions—under which

grandfathering yields the revenue-maximizing endowments.

The remainder of this paper is organized as follows. The setup is introduced in Section 2.

Section 3 presents the main results. In Section 4, we apply the model to data from Southern

California’s RECLAIM pollution permit trading program. Section 5 extends the model to

allow for investment, and Section 6 concludes the paper. Further extensions and results are

contained in the Online Appendix.

uated at this agent’s worst-off type.
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2 Setup

We assume that there is set of n agents denoted by N and a homogeneous good. In our

application, the agents are emitting firms and the good is emission permits. Our assump-

tions allow the possibility that each emitting firm i is known to have a minimum permit

requirement that is essential to its business and also a privately known value for a range

of additional permits. Consistent with this, we assume that the willingness to pay for each

agent i is fixed at θ > 0 for the first di ≥ 0 units and equal to θi for an additional ki > 0 units,

where θi is drawn independently from the continuous distribution Fi with identical support

[θ, θ] and density fi that is positive on the interior of the support. While the distributions

Fi are assumed to be commonly known, the realization of θi is agent i’s private information.

Further, agent i’s willingness to pay for units beyond the di + ki-th unit is assumed to be

zero. Thus, we refer to di as agent i’s minimal demand, to ki as agent i’s variable demand,

and to di + ki as agent i’s total demand. Agents in this model exhibit decreasing marginal

values for the good, consistent with the data in our application in Section 4.

The total supply of the good is assumed to be sufficient to cover agents’ minimal demands,

but not sufficient to cover agents’ total demand. Given this, it is without loss of generality

to focus on the allocation of emission permits above and beyond agents’ minimal demands

because any efficient mechanism will first satisfy all agents’ minimal demands and then

allocate the remaining permits according to the agents’ private types for additional units.

We consider a consignment auction, described in detail below, in which the agents are

first endowed with units of the good and then, following the realization of their private

information, participate in an auction that facilitates trading of the good among the agents.

We normalize the total supply in excess of agents’ minimum demands, denoted by R, to be

equal to 1, and we denote by r = (r1, . . . , rn) the initial endowment of permits to the agents

above and beyond their minimal demands, where
∑

i∈N ri = R.9 Given our assumptions, we

9In Section 3.3, we generalize the model by allowing the designer to withhold part of the
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have:10

R = 1 <
∑
i∈N

ki.

The agents’ total endowments are assumed to be sufficient to at least cover their minimal

demands, which implies that ri ≥ 0, and, except where noted (e.g., Section 3.4), we assume

that no agent’s total endowment exceeds its total demand, implying that ri ≤ ki. That is,

no agent is endowed with less than what it must have to operate its business, and no agent

is endowed with more than it could possibly use.

We refer to the game consisting of both the endowment of agents with units of the good

and the subsequent auction-based trading as the consignment auction. Recognizing that

downstream interactions may play an important role depending on the application, but are

typically difficult to model, we focus on auction-based trading and refer to this as the second-

stage auction or simply the auction. The timing is as follows: First, prior to the realization

of agents’ types, the designer chooses the endowment vector r, which is observed by all.

Second, after agents’ private types are realized, the agents choose whether to participate in

the auction.11 We restrict attention to auctions that are ex post efficient and satisfy dominant

strategy incentive compatibility and interim individual rationality constraints. Because agent

supply until the auction is run. That is, we allow for
∑

i∈N ri ≤ R there.

10More formally, if R̂ is the total supply of the good, then R ≡ R̂−
∑

i∈N di, and if agents’

total initial endowments are r̂ = (r̂1, . . . , r̂n), then ri = r̂i − di.
11As noted, agent i’s endowment ri is assigned before its type θi are realized. This as-

sumption mimics an aspect of real-world emission permit markets in that tradeable permits

tend to be issued at sufficiently long intervals that allowing trading of those permits in the

interim makes economic sense. In light of this, it seems useful to view some details of a firm’s

value for permits as being unknown at the time that endowments are assigned, with actual

values being realized at a later date. In this sense, one can view a firm’s type θi as reflecting

relatively short-term characteristics or information, whereas the assignment of endowments

must rely on more permanent characteristics of firms, which we capture by having firms’
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i obtains value min{ri, ki}θi if it does not participate in the auction, the auction must offer

agent i an expected payoff of at least this outside option in order for agent i’s interim

individual rationality constraint to be satisfied. As we show below, such an auction exists.

We assume that the auction runs if and only if its expected revenue (conditional on the

endowments r and taking expectations over agents’ types) is nonnegative.12

Standard mechanism design results imply that the VCG mechanism maximizes ex ante

expected revenue subject to ex post efficiency, (dominant-strategy) incentive compatibility,

and interim individual rationality (see the Online Appendix, Section 1.1).13 Thus, we assume

that the designer uses the VCG mechanism for the auction. We denote the VCG mechanism

by 〈Q,Tr〉, where Q : [θ, θ]n → Rn
+ is the ex post efficient allocation rule and Tr : [θ, θ]n →

Rn is the VCG payment rule (where payments are from agents to the market designer). For

a given vector of reported types θ, maximal social surplus, denoted W (θ), is

W (θ) = max
Q̂∈∆,Q̂≤k

∑
i∈N

θiQ̂i(θ) =
∑
i∈N

θiQi(θ),

where ∆ is the (n− 1)-dimensional simplex and the second equality holds because Q is the

distributions and maximum demands be common knowledge, including for the designer.

12As shown by, e.g., Börgers and Norman (2009), the mechanism can always be made to

balance the budget with equality by returning any expected surplus to the agents through

fixed payments.

13The notion of incentive compatibility is not material. The VCG mechanism being

dominant-strategy incentive compatible implies that it is also Bayesian incentive compatible.

With independent private values, for any efficient mechanism that is Bayesian incentive com-

patible, there exists an equivalent mechanism that is dominant strategy incentive compatible;

see, e.g., Gershkov et al. (2013).
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ex post efficient allocation rule. Given θ̂i ∈ [θ, θ], the VCG transfer from agent i is

Tr,i(θ) = W (θ̂i,θ−i)− (W (θ)− θiQi(θ))− θ̂i min{ri, ki}.

Accordingly, the designer’s revenue ex post, denoted Π(θ, r), is

Π(θ, r) =
∑
i∈N

Tr,i(θ) =
∑
i∈N

W (θ̂i,θ−i)− (n− 1)W (θ)−
∑
i∈N

θ̂i min {ri, ki} , (1)

where the second equality follows from substituting Tr,i(θ). The transfer Tr,i(θ) depends

both directly on ri, as is evident from the definition, and indirectly because, as shown after

(2) below, θ̂i is also a function of ri.

By the payoff equivalence theorem (see, e.g., Börgers, 2015), any ex post efficient mech-

anism that is incentive compatible and that satisfies the interim individual rationality con-

straints with equality for the worst-off types induces the same interim payoffs, and thus ex

ante expected payoffs, as the VCG mechanism. Consequently, focusing on the VCG mech-

anism is without loss of generality within the context of ex post efficient mechanisms. This

thus leaves only the question of why one should focus on ex post efficient mechanisms since,

notwithstanding the normative appeal of efficiency, there are so many ways in which markets

can and arguably do depart from that benchmark. A priori, we see two reasons why efficiency

is a good assumption. First, efficiency provides a well-defined benchmark whereas the mul-

titude of reasons for which markets may operate inefficiently begs the question of which one

analysts should zero in on. Lacking any direct evidence as to the source(s) of inefficiency, any

alternative modeling assumption would, arguably, be stronger and seem more arbitrary than

assuming efficiency. Second, efficiency is a distribution-free concept that permits tractable

modeling. This contrasts with, say, second-best mechanisms à la Myerson and Satterthwaite

(1983), in which the allocation rule is intertwined with the agents’ distributions. Moreover,

our application in Section 4 shows that the data are largely consistent with the assumption

that the market reallocates efficiently.
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3 Consignment auctions

In this section, we show that the market’s expected and ex post revenue is nonnegative

with appropriately chosen endowments. Under additional assumptions, we relate the choice

of endowments to benchmarking and grandfathering. We also analyze hybrid consignment

auctions, in which only a fraction of the total supply is allocated as endowments ex ante,

with the remainder being auctioned off once private information has been realized.

3.1 Ex post and expected revenue

Denoting the interim expected efficient allocation for agent i with type θi by qi(θi), we have

qi(θi) = Eθ−i
[Qi(θi,θ−i)],

where, given the assumed properties of the distributions, qi(θi) is continuous and increasing

in θi. Given the assumptions of a maximum demand for agent i of ki and marketwide scarcity,

it follows that qi(θi) is bounded above by ki. Analogously, agent i’s interim expected payment

to the mechanism, tr,i(θi), is

tr,i(θi) = Eθ−i
[Tr,i(θi,θ−i)].

Combining these, the interim expected payoff from the consignment auction of agent i with

type θi, net of the agent’s outside option, can thus be expressed as

qi(θi)θi − tr,i(θi)−min{ri, ki}θi. (2)

For each agent i, there exists a worst-off type, denoted by θ̂i, which is the type that minimizes

(2). As we show in the proof of Lemma 1, θ̂i is such that qi(θ̂i) = min{ri, ki}. (This is a

generalization of the result of Cramton et al. (1987) to heterogeneous distributions and
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maximum demands ki less than 1.) Intuitively, an agent benefits from trade, both as a

buyer or seller, so an agent’s worst-off type is the one whose interim expected allocation

in the second-stage auction is equal to its endowment or, if its endowment is greater than

its maximum demand, then equal to its maximum demand. Because qi is continuous and

increasing in agent i’s type, θ̂i is unique.

Lemma 1. There exists a unique θ̂ ∈ (θ, θ) and endowments r∗ ≡ (q1(θ̂), . . . , qn(θ̂)) with

r∗i ∈ [0, ki] for all i ∈ N and r∗j ∈ (0, kj) for some j ∈ N such that when the endowments

are r∗, all agents have the same worst-off type θ̂.

Proof. See Appendix A.1.

By Lemma 1, endowments r∗ exist that induce all agents to have the same worst-off type,

even though the agents themselves are not necessarily symmetric. The following proposition

shows that if no agent can have an endowment in excess of its maximum demand, then r∗

maximizes the expected revenue from the second-stage auction, Πr ≡ Eθ[Π(θ, r)].

Proposition 1. If ri ≤ ki has to hold for all i ∈ N , then endowments r∗ maximize the

expected revenue from the second-stage auction Πr.

Proof. See Appendix A.2.

The intuition for why equalizing the worst-off types maximizes revenue is based on an

envelope-type argument. The only effect that changes in ri have on expected revenue under

ex post efficiency is the direct effect on the worst-off types. Because each agent i’s worst-

off type increases in ri and only depends on ri, expected revenue Πr is strictly concave

in r. Hence, it is maximized when r is such that all worst-off types are the same. Che

(2006) and Figueroa and Skreta (2012) use the property that equal worst-off types maximize

the designer’s revenue in a partnership dissolution model (that is ki = 1 for all i ∈ N ),

anticipating that an efficient dissolution mechanism is used.14 Loertscher and Wasser (2019)

14Of course, in the original partnership model of Cramton et al. (1987), the worst-off
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show that, within a partnership model, this property generalizes beyond the use of an efficient

dissolution mechanism. For example, anticipating that, at the dissolution stage, the designer

maximizes its revenue, the revenue-maximizing partnership shares are such that all agents

with positive shares have the same worst-off type.15 That said, none of these papers studies

a more general settings than ours because they all impose ki = 1 for all i, which also means

that ri ≤ ki is automatically satisfied in these earlier works. Because r∗ maximizes Πr,

subject to ri ≤ ki for all i ∈ N , we refer to r∗ as the optimal endowments.16

Theorem 1. For all θ, Π(θ, r∗) ≥ 0; moreover, Πr∗ > 0.

Proof. See Appendix A.3.

The proof of Theorem 1 generalizes the revealed-preference argument used by Che (2006)

to prove the possibility of efficient dissolution in a partnership model with heterogeneous type

distributions, that is, for a model with ki = 1 for all i ∈ N that permits Fi 6= Fj. Theorem

1 generalizes Cramton et al. (1987) by allowing for ki 6= kj and Fi 6= Fj.
17

While Myerson and Satterthwaite (1983) show that with one buyer and one seller, i.e.,

r = (0, 1), efficient trade is not possible without running a deficit, Theorem 1 shows that

types are also the same when all agents have the same ownership share, given that their

distributions are all the same.

15Lu and Robert (2001) allow for ki 6= kj and rent extraction by the designer, but impose

identical distributions and do not optimize over endowments.

16The terminology of “optimal endowments” is in line with the mechanism design lit-

erature, which refers to mechanisms that maximize revenue as optimal (see e.g. Myerson,

1981). In our setting, however, the second-stage mechanism itself is not optimal in this sense

because it maximizes social surplus.

17Other papers that provide conditions for the first-best to be possible include Makowski

and Mezzetti (1994), Williams (1999), Neeman (1999), Krishna and Perry (2000), Schweizer

(2006), and Segal and Whinston (2011).
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with appropriately chosen endowments, ex post efficient trade is possible without running

a deficit.18 This is achieved even though trade involves transactions costs in the form of

information rents that must be covered. The fact that whether ex post efficient trade is

possible or not hinges on the initial endowments highlights the importance of having endow-

ments that are well chosen. In particular, Theorem 1 shows that the optimal endowments

r∗ generate positive ex ante revenue and so permit ex post efficient trade.

As mentioned, our paper is related to Loertscher and Marx (2020) and Delacrétaz et al.

(2022). In the context of Theorem 1, the identification by Loertscher and Marx (2020) of

asset market environments in which the VCG mechanism has a balanced budget subject

to ex post individual rationality, together with the result in Delacrétaz et al. (2022) that

subject to ex post individual rationality the VCG mechanism never runs a budget surplus,

highlights the role of the weaker notion of interim individual rationality that we impose.19

18To see why the designer may run a deficit in the consignment auction, consider a pa-

rameterization such that for some S ⊂ N , we have
∑

i∈S ki = 1, implying that total demand

by agents in S is equal to the total supply. If ri = ki for all i ∈ S, then we have a two-sided

allocation problem, with the agents in S acting as sellers and the remaining agents acting

as buyers. The results in Loertscher and Mezzetti (2019) then imply that under the VCG

mechanism, the deficit on each unit traded is at least as large as the difference between the

highest and the lowest market-clearing Walrasian price. Hence, Π(θ, r) ≤ 0 for all θ and

Π(θ, r) < 0 for a positive measure set of θ, implying an expected deficit from the second-

stage auction. Moreover, under the VCG mechanism, the interim individual-rationality

constraints are binding for the highest possible types of the sellers (agents in S) and for the

lowest possible types of the buyers (agents in N \ S). Thus, there are no fixed payments

that increase revenue without violating the interim individual-rationality constraints.

19The gist of the environments identified by Loertscher and Marx (2020) is as follows.

Suppose there is an odd number of traders, each of whom has an endowment of one and

a maximum demand to use the good of two units. For any given realization of agents’
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A natural question that may arise is why one would or should care about the no-deficit

constraint in the first place. Indeed, given the environment with quasilinear utility, one could

simply use transfers, for example, from the general public, to balance the budget. Even if

one accepts the no-deficit constraint, one may wonder why or to what extent r∗ would be

preferable to any r satisfying Πr ≥ 0.20 To address these questions, it is useful to recall that

the assumption of quasilinear utility is imposed not because it is believed to hold universally,

but because it makes the model tractable. Without quaslinear utility, transfers can be costly,

and there are numerous reasons for why taxes that fill the public coffers are socially costly,

making them unsuitable to finance particular markets or projects.21 Put differently, the

seminal impossibility results of Vickrey (1961) and Myerson and Satterthwaite (1983) and

the entire literature on incentive compatible provision of public goods implicitly or explicitly

rest on arguments along these lines. As Vickrey (1961, p. 8) notes, using public funds for

these purposes would “prove to be inordinately expensive in terms of their demands on the

fiscal resources of the state relative to the net benefits to be realized.” While this is not

explicitly modeled, it seems plausible and intuitive that the larger is the budget surplus

types, the median type is the Walrasian price, which is a singleton, and the agent with that

type consumes its endowment under efficiency. Under these conditions, the VCG prices for

all units that are traded are equal to the Walrasian price, and so the budget of the VCG

mechanism is balanced.

20In the Online Appendix, we provide an AGV mechanism (d’Aspremont and Gérard-

Varet, 1979; Arrow, 1979) with zero revenue ex post—as this shows, our requirement of

nonnegative revenue in expectation can be strengthened to require nonnegative revenue

ex post because, as shown by Börgers and Norman (2009), given any Bayesian incentive

compatible mechanism that generates nonnegative revenue in expectation, one can construct

another Bayesian incentive compatible mechanism with the same allocation rule and the same

interim expected payments that generates nonnegative revenue for all type realizations.

21See also Hellwig (2003) for a related discussion.
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under ex post efficiency, subject to incentive compatibility and individual rationality, the

larger is the leeway to obtain efficient outcomes.22

Furthermore, in settings like those of an emission permits market, there are multiple

practical reasons why a designer might care about the revenue generated from a consignment

auction. For example, running the auction is not costless and revenue generated from the

auction can be used to cover administrative costs of the consignment auction or for other

environmental causes that generate social benefits (see, e.g., ICAP, 2021). In addition, the

presence of an expected budget surplus may increase the motivation for a government or

third party to initiate an emission market.

3.2 Benchmarking and grandfathering

As mentioned in the introduction, benchmarking and grandfathering are widely used means

to determine endowments r. We now show that in a setting with what we call strength-

ordered groups, endowment vector r∗ amounts to benchmarking in the sense that agents

within each group obtain the same endowments. Then we provide conditions under which

grandfathering—that is, determining endowments on the basis of historical consumption

levels—permits efficient consignment auctions. Because historical averages are simple statis-

22To illustrate this point, consider a simple bilateral trade setup in the tradition of Myerson

and Satterthwaite (1983). That is, there is one buyer and one seller and a single good to

be traded. Letting [v, v] and [c, c] be the supports of the buyer’s and the seller’s type

distributions satisfying v > c, ex post efficiency is possible if and only if v ≥ c. If ex post

efficiency is possible, it can be achieved by setting a posted price p ∈ [c, v]. Thus, the larger

is the gap v − c, the more leeway there is to choose a p that achieves ex post efficiency.

Because pB = v is the largest price that the buyer can be charged and pS = c is the smallest

that the seller can be offered without violating ex post efficiency, this is equivalent to saying

that the larger is the designer’s revenue pB − pS under ex post efficiency, the more leeway

there is to achieve ex post efficiency.
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tics, the data requirements for grandfathering are small.

Benchmarking and strength-ordered groups

We begin by defining strength-ordered agents and then extend that to strength-ordered

groups. We say that we have strength-ordered agents if lower-indexed agents are stronger in

the sense of having first-order stochastically dominating distributions and larger maximum

demands, i.e., for all i ∈ {1, . . . , n− 1} and θ ∈ (θ, θ),

Fi(θ) < Fi+1(θ) and ki > ki+1. (3)

We then have the following result:

Proposition 2. With strength-ordered agents, stronger agents have greater optimal endow-

ments; that is, i < j implies r∗i > r∗j .

Proof. See Appendix A.4.

Proposition 2 provides support for a benchmarking approach that gives larger endow-

ments to firms in industries that have greater value for the permits, i.e., relatively more

permits are given to firms in industries with relatively more emissions. For additional re-

sults on how optimal endowments change with maximum demands, see the Online Appendix.

There we show that with two strength-ordered agents, the optimal endowment of the stronger

agent increases with proportional increases of the maximum demands and with the maximum

demand of the stronger agent, and decreases with the maximal demand of the weaker agent.

This provides support for a benchmarking approach that shifts permits to heavier emitters

following a demand shift that affects all industries proportionally or following demand shifts

that favor the heavy emitting industries or disfavor other industries.

Under benchmarking, a facility’s endowment is based on a fixed benchmark for an appro-

priate level of the emissions per unit of output, multiplied by the facility’s expected output.

For example, the benchmark might be set somewhere between the industry average and the
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best performing facility (Pizer and Zhang, 2018). In such a regime, benchmarks can be ex-

pected to differ across industries, with, for example, different benchmarks for power, cement,

and aluminum.

To allow for such differences, we now amend the above setup by allowing agents to belong

to different groups ex ante, where agents within a group have the same type distribution

and same maximum demand to use the good. For the setup with groups, we show an “equal

treatment of the equals” result: at r∗, agents in the same group have the same optimal

endowment. When agents can be grouped into a strong group and a weak group, which

we define below, the optimal endowment weakly increases for a weak agent that transitions

from the weak to the strong group.

Denoting the set of groups by G ≡ {G1, . . . , Gm},23 we obtain the result of equal treatment

of the equals stated in Corollary 1 by noting that the interim efficient allocation qi is the

same for all agents in the same group, so r∗i = qi(θ̂) is the same for agents in the same group:

Corollary 1. Ex ante identical agents have the same optimal endowment; that is, for all

G` ∈ G and all i, j ∈ G`, r
∗
i = r∗j .

Corollary 1 provides support for the use of a common benchmark across all firms in the

same group.

We say that a setup has strength-ordered groups if for all θ ∈ (θ, θ),

FG1(θ) < · · · < FGm(θ) and kG1 > · · · > kGm ,

where FGi
and kGi

are the distribution and maximum demand, respectively, for every agent

in Gi. A lower-numbered group is stronger in that it has a better distribution in the sense

of first-order stochastic dominance and a larger maximum demand to use the good. Propo-

sition 2 and Corollary 1 then imply that agents in stronger groups have greater optimal

23Formally, we assume ∩G∈GG = ∅ and ∪G∈GG = N . The model studied thus far is a

special case of this with |G| = n and, for each group G, |G| = 1.
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endowments:

Proposition 3. In the setup with strength-ordered groups, all agents in a stronger group

have a greater optimal endowment than agents in a weaker group; that is, `1 < `2 implies

that for all i ∈ G`1 and j ∈ G`2, we have r∗i > r∗j .

Proposition 3 implies that endowments will be greater for industries that have better

distributions in the sense of first-order stochastic dominance and/or larger maximum de-

mands.24 We provide additional results for strength-ordered groups in the Online Appendix.

Grandfathering and efficient consignment auctions

A widely used scheme to determine endowments is so-called grandfathering, whereby firms are

endowed with permits according to their long-run average consumption. Grandfathering is

often criticized on various grounds, including incentives to inefficiently boost consumption to

increase future endowments and concerns for equity because larger polluters receive larger

endowments. Without disputing these possible concerns, we now show that endowments

equal to each firm’s expected consumption under efficiency allow the designer to break even

in expectation and so allows an efficient second-stage auction to operate. This means that

“grandfathering gets it right” if the the historical consumption reflects efficient allocations.

Of course, as discussed at the end of Section 2, efficiency is a strong assumption, but without

direct evidence as to the nature of inefficiency, any departure from that assumption seems

even stronger.

Formally, letting ri = Eθ[Qi(θ)] and r = (ri)i∈N be the endowments under grandfathering

and Tr,i(θ) be the associated VCG transfers for all i ∈ N , we have the following result:

Proposition 4. Consider grandfathering. Then, each agent’s interim individual rationality

constraint is satisfied. Moreover, the ex ante expected transfer of every agent is non-negative,

24Proposition 3 generalizes a result obtained by Che (2006) for the case with single-agent

groups, ki = 1 for all i ∈ N , and distributions ranked by first-order stochastic dominance.
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that is, for all i ∈ N , Eθ[Tr,i(θ)] ≥ 0. Consequently, the designer’s expected revenue is

nonnegative, that is, Πr ≥ 0.

Proof. See Appendix A.5.

To develop intuition for Proposition 4, observe that if it so happened that ri = Qi(θ)

for each i, there would be no trade in the second stage of the consignment auction because

every agent’s endowment equals its efficient consumption level. Consequently, the market

would not run a deficit. Proposition 4 shows that this no-deficit property extends to the case

where each agent i is endowed with its expected consumption under ex post efficiency, that

is, ri = Eθ[Qi(θ)]. Moreover, this intuition also makes clear that, perhaps counterintuitively,

low trading volumes in the second-stage do not imply that emission markets are inefficient.

Segal and Whinston (2011) refer to the vector r as a simple status quo. They show that it

ensures voluntary participation and efficient bargaining with private as well as interdependent

values (see their Corollaries 1 and 2). To keep our paper self-contained, and because the

proof is short, we provide an independent proof of Proposition 4 in Appendix A.5. For the

rest of the paper, we refer the endowments r as the Segal-Whinston (S-W) endowments.

While we consider grandfathering in the context of a consignment auction, Cramton

and Kerr (2002) contrast grandfathering, where the authority gives permits away to spe-

cific groups, with a direct auction of permits by the authority, arguing that auctioning is

preferable because it “provides greater incentives for innovation, provides more flexibility in

distribution of costs, and reduces the need for politically contentious arguments over the allo-

cation of rents” (Cramton and Kerr, 2002, p. 339). Proposition 4 shows that grandfathering

in a consignment auction based on the expected consumption of permits has the advantage

of inducing endowments that permit efficient reallocation in a second-stage auction without

running a deficit in expectation. As Proposition 5 below shows, firms prefer efficient con-

signment auctions to permits being sold via an efficient auction, which makes consignment

auctions politically more appealing. Further, as Proposition 7 in Section 5 shows, efficient
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consignment auctions induce efficient investment.25

In general r∗ and r differ, even with only two agents.26 However, the case with identical

distributions and two agents implies that r∗ = r. To see this, notice first that with identical

distributions and two agents, the worst-off type θ̂ is such that F (θ̂) = 1/2.27 This implies

that r∗1 = (k1 + 1− k2)/2. Next, observe that agent 1’s ex ante expected allocation is

r1 = Eθ[Q1(θ)] =

∫ 1

0

[k1F (θ)+(1−k2)(1−F (θ))]f(θ)dθ = (k1+k2−1)

∫ 1

0

F (θ)f(θ)dθ+1−k2.

But this is the same as r∗1 if
∫ 1

0
F (θ)dF (θ) = 1/2, which is indeed the case,28 establishing

that r∗ = r. In addition, if all firms are ex ante identical, that is, if ki = k and Fi = F for all

i ∈ N , then each firm’s ex ante expected allocation is 1/n, which is also r∗i . Hence, r∗ = r. Of

course, for cases in which r∗ = r, we have, using Theorem 1, for all θ, Π(θ, r∗) = Π(θ, r) ≥ 0

and Πr∗ = Πr > 0, which gives us the following result:

Corollary 2. Assume that for all i ∈ N , Fi = F and either (i) n = 2 or (ii) for all i ∈ N ,

ki = k. Then under grandfathering, the designer never runs a deficit ex post and obtains a

positive budget surplus in expectation.

25That said, efficient investments would also be a Nash equilibrium outcome if an efficient

standard auction were used to allocate permits.

26For example, with two agents and distributions F1(θ) = θ2 and F2(θ) = θ, we have

θ̂ = (
√

5− 1)/2 and r∗1 = (k1(
√

5− 1) + (1− k2)(3−
√

5))/2 and r1 = (1 + 2k1 − k2)/3.

27To see this, observe first that qi(θ) = kiF (θ) + max{1 − kj, 0}(1 − F (θ)). Next, dis-

tinguishing between the three cases kj ≤ ki < 1; kj < ki = 1; and kj = ki = 1, one

obtains
∑

h qh(θ) = 2(k1 + k2 − 1)F (θ) + 2 − (k1 + k2);
∑

h qh(θ) = 2kjF (θ) + 1 − kj; and∑
h qh(θ) = 2F (θ). Simple algebra shows that θ̂ such that

∑
h qh(θ) = 1 implies F (θ̂) = 1/2

for each of these three cases.

28This follows because quantiles are uniformly distributed, so the expected quantile is 1/2.

Formally, using the change of variables y = F (θ), we have
∫ 1

0
F (θ)dF (θ) =

∫ 1

0
ydy = 1/2.
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3.3 Hybrid consignment auctions

Emission abatement imposes costs on producers, which may pose political challenges for

the imposition of regimes that restrict emissions. For a given total emission level, allocat-

ing the corresponding number of permits to emitting entities via an efficient auction may

not be politically palatable because these entities will aim to resist this additional “tax.”29

The designer can reduce these political obstacles by running what may be called a hybrid

consignment auction. To formalize this notion, we focus on the “variable” part of demand

parameterized by ki for each i and the supply R = 1, which is net of the minimum demands∑
i∈N di.

To capture the possibility mentioned in the Introduction that the authority may withhold

permits in the first stage and sell them in the second stage, we now define an α-hybrid

consignment auction as a mechanism in which the agents are endowed with a fraction α

of the total supply R in the first stage and the remaining fraction 1 − α is auctioned off

in the second-stage auction. Let θ̂(α) be such that
∑

i qi(θ̂(α)) = α. For all i ∈ N , let

r∗i (α) = qi(θ̂(α)) and ΠH(θ, r∗(α)) be the associated ex post revenue in the second-stage

auction from selling the α proportion of the permits and from the agents’ trading their

endowments and denote by ΠH(α) = E[ΠH(θ, r∗(α))] the ex ante expected revenue. Then

the α-hybrid consignment auction generates nonnegative expected revenue. Moreover, ΠH(α)

weakly decreases in α while each agent’s payoff weakly increases in α.

Proposition 5. In an α-hybrid consignment auction, maximized expected revenue ΠH(α) is

nonnegative and weakly decreases in α, and each agent’s expected payoff weakly increases in

α.

Proof. See Appendix A.6.

Proposition 5 implies that the designer obtains nonnegative expected revenue from a

29See e.g., Kreibich and Hermwille (2021) for the problems faced by the firms in coping

with climate policies.
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hybrid consignment auction with endowments r∗(α) and that the agents themselves prefer

that to having the designer auction off all the permits in the second stage. Moreover, the

designer can choose the trade-off between revenue and political palatablity by varying α.

The Online Appendix provides a more detailed analysis of the properties of r∗(α) for cases

with two agents.

3.4 Overendowment of agents

We now drop the restriction that ri ≤ ki for all i. By the assumption that the agents have

zero value for any units that are beyond their maximum demand, endowments greater than

ki function similarly to the (1−α) proportion of supply that is auctioned off by the designer

in the α-hybrid auction. In this way, overendowments can improve revenue as we now show.

Let agent i∗ be the agent with the minimal type-integrated distance between its maximum

demand and its interim expected allocation under ex post efficiency, that is,

i∗ ∈ arg min
i∈N

∫ θ

θ

(ki − qi(x))dx,

which, for ease of exposition, we assume to be unique. Proposition 6 shows that agent i∗

receives the full supply if overendowments are optimal.

Proposition 6. If overendowments ro maximize the designer’s expected revenue, then ro has

the form that, for all j ∈ N\{i∗},

roj ∈ [0,max{0, 1−
∑

`∈N\{j}

k`}], and roi∗ = 1−
∑

j∈N\{i∗}

roj .

Proof. See the Online Appendix.

22



4 Application

Our theoretical analysis assumes that the revenue of the VCG mechanism in the second-

stage of the consignment auction is non-negative. It also provides three different endowment

vectors: r∗ and r, which generate non-negative revenue in the second-stage, and ro, which

may maximize second-stage revenue when overendowments are allowed. In this section, we

test whether, given empirically observed endowments and estimated distributions, the VCG

revenue is nonnegative and which of the theoretical endowments best matches the empirical

ones.

Our application uses data from Southern California’s RECLAIM pollution permit trading

program collected and analyzed by Fowlie and Perloff (2013). The RECLAIM setting involves

an initial assignment of permits followed by unstructured trading. Thus, the second stage is

not literally an auction as modeled above. Nevertheless, it is useful to take an as-if approach

to modeling this market and to assume that the reallocation stage is efficient, and hence

equivalent to a VCG mechanism being run.30 In line with this, we change the terminology

for the second stage of the consignment auction from second-stage “auction” to second-stage

“reallocation.”

4.1 Data and procedure

The data that we use for our analysis consist of the initial assignment of emission permits

and the actual emissions for ten periods for the 56 facilities in the data of Fowlie and Perloff

(2013) that are designated as “cycle 1” facilities and that have observations for each of the

final 10 semi-annual periods in the data, spanning 2001-02 to 2006-01.31 Denoting the set

30See Larsen and Zhang (2021) for an empirical application of this as-if approach and

Loertscher and Marx (2022) for additional motivation and a theoretical generalization.

31Facilities are divided into two staggered compliance cycles designated as “cycle 1” and

“cycle 2.”
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of periods by T , for each period t ∈ T and each facility i ∈ {1, . . . , 56}, the data contain

the initial assignment of emission permits to facility i, âlloci,t, and facility i’s emissions for

period t, ̂emissioni,t.

It is our understanding that permit holdings following trading must be equal to emissions

to avoid penalty, so we use the facilities’ emissions as a proxy for their permits following

trading.32 However, in the data, total assigned permits in each assignment period are not

equal to total emissions in that assignment period as a result of excluded facilities and the

trading of permits across periods.33 Thus, to balance the total emissions and total allocations

within each period, we create an artificial facility, facility 0, whose initial assignment and

emissions balance the totals within each period.34 Consistent with our model, the data

reflect that whether a facility is a buyer or a seller in a particular consignment auction is

endogenous. On average, in a given year, 35% of facilities are net buyers and 65% are net

sellers. An individual facility may be a buyer in some years and a supplier in others. Only

8.7% of facilities are net buyers in every year, and 32% of facilities are net sellers in every

year. The remainder—59% of facilities—are net buyers in some years and net sellers in other

years. Figure 1 illustrates the initial assignment and emissions of one facility, Mission Clay

Product. As shown in the figure, in some years, the facility has higher emissions than its

endowment and thus is a net buyer, but in other years, it has a higher endowment than its

emissions and is thus a net seller.

To match the theoretical model, we assume that in each period t, each facility i draws

32We presume that an agent’s emissions cannot be more than its permit holdings. Further,

if emissions were lower, then one would expect the agent to sell its excess permits. This

supports the assumption of permit holdings after trading being equal to emissions.

33In addition, Fowlie and Perloff (2013) mention that the government reserved some per-

mits, which it then sold in the secondary market.

34For the artificial facility, we have âlloc0,t = max{0,
∑56

i=1
̂emissioni,t−

∑56
i=1 âlloci,t} and

̂emission0,t = max{0,
∑56

i=1 âlloci,t −
∑56

i=1
̂emissioni,t}.
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Figure 1: Data for Mission Clay Product on initial assignments and actual emissions by year.
Source: Fowlie and Perloff (2013).

a type θi,t independently from a known distribution Fi that captures facility i’s value of a

unit share of the permits, rather than the absolute quantity of NOx emissions. We further

assume that the type draws (θi,t)t∈T are independent across periods.

For each period t, let supplyt ≡
∑56

i=0 âlloci,t =
∑56

i=0
̂emissioni,t be the total supply

in that period. As the RECLAIM program is designed to reduce NOx emissions overtime.

supplyt is reduced overtime. We first normalize the supply for all periods to R̂. Hence, for

each facility i and each period t, we have its emission shares, denoted by emissioni,t, and

its allocation shares, denoted by alloci,t, where

emissioni,t ≡
̂emissioni,t
supplyt

R̂ and alloci,t ≡
âlloci,t
supplyt

R̂.

We further assume that the facilities can be divided into groups where the facilities in the

same group draw their types independently from the same distribution and have the same
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maximum and minimum demand. We divide the data into 12 groups based on each facility

i’s average emission overtime, Average Emissioni ≡
∑

t∈T emissioni,t

T
, and we denote the set

of groups by G = {1, . . . , 12}. If facilities i and j are in the same group g ∈ G, we have

Fi = Fj = Fg, ki = kj = kg, and di = dj = dg, but facilities i and j are still distinct facilities

that participate in the reallocation stage independently. We parameterize the distributions

by assuming that Fg(θ) = θag .35 We denote the vector of distributional parameters by

a = (ag)g∈G and by F(a) the vector of distributions parameterized by a.

For each group g ∈ G, we approximate dg and kg using its emission data, (emissioni,t)i∈g,t∈T .

More specifically, we use d̃g = mini∈g,t∈T as the empirical minimum demand for group g and

k̃g + d̃g = (F̃g((emissioni,t)i∈g,t∈T ))−1(0.9), that is the 90th percentile, as the empirical

maximum demand for group g, where F̃g((emissioni,t)i∈g,t∈T ) is the empirical distribution

extrapolated from the sample data (emissioni,t)i∈g,t∈T . Given d̃ and R̂, the empirical emis-

sion of each facility i ∈ g in period t is Q̃i,t ≡ emissioni,t − dg. We use Q̃ to denote the

empirical emission.

In line with our theoretical analysis, we assume that the reallocation stage operates

efficiently. For i in group g, let EF(a)[Qi(θ)] be the ex ante expected allocation and let

Q̃g =
∑

i∈g,t∈T Q̃i,t

|g||T | be the empirical average emission for group g facility. The estimated

distributional parameters ã then minimize the sum of squared errors between the empirical

average emission and the theoretical ex ante expected allocation, SSE(a), where

SSE(a) ≡
∑
g∈G

(∑
i∈g EF(a)[Qi(θ)]

|g|
− Q̃g

)2

(4)

35We perform the same calibration exercise for two alternative families of distributions:

cumulative distribution functions Fg(θ) = 1 − (1 − θ)ag , and the Beta distributions with

two equal parameters, Beta(ag, ag), that is, fg(θ) = Γ(2ag)

Γ2(ag)
θag−1(1− θ)ag−1, where Γ(·) is the

Gamma function. We show that the results are robust to the distribution assumptions (see

Table 2.2 and the measures of distributional similarity that follow that table).
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Table 2.1 in Appendix 2.1 provides summary statistics for each facility’s allocations and

emissions across periods. Table 2.2 in Appendix 2.1 summarizes each facility’s maximum

demand, fitted distributional parameter ã, and optimal normalized endowment r∗.

4.2 Testing for nonnegative revenue

Observe that ã does not make use of information about the empirical endowments nor does

our calibration use the assumption that the VCG mechanism does not run a deficit in the

second-stage. Given ã and the empirical endowments, it is therefore possible that the VCG

mechanism would run a deficit. Thus, computing revenue of the VCG mechanism given ã

and the observed endowments provides a test for our identifying assumption: if the computed

revenue is nonnegative, the identifying assumption is validated, and otherwise it is rejected.

Thus, our identifying assumption is validated by the positive expected revenues shown in

Table 1, which reports the expected VCG revenues from the empirical endowments for the

sample periods using the distributions F(ã).

Periods 2001-02 2002-01 2002-02 2003-01 2003-02

Revenues 0.0451 0.0451 0.0295 0.0451 0.0400

Periods 2004-01 2004-02 2005-01 2005-02 2006-01

Revenues 0.0446 0.0415 0.0448 0.0446 0.0446

Table 1: Expected VCG revenues from empirical endowments

Given that the empirical endowments permit efficient reallocations, if there were signifi-

cant transaction costs in the reallocation stage, one would expect to observe a lower trading

volume than under efficiency. We explore this by comparing the empirical trading volumes

with trading volumes simulated under the assumption of ex post efficient reallocation, given

the empirical endowments.36 The simulations are based on 1000 independent draws of the

36We define the trading volume in a period to be one-half of the sum of the absolute value

of the differences between each facility’s endowment and emission.
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type profile θ for each period from the fitted distributions F(ã). Figure 2 shows the re-

sults, focusing on the mean, 5-th, and 95-th percentiles. The observed trading volumes are,

with one exception, within 90% of the simulated trading volumes, thus providing additional

evidence of consistency of the theoretical assumptions with the RECLAIM data.

Figure 2: Observed trading volumes (black solid line) and simulated trading volumes under ex
post efficient trade relative to the empirical endowments (dotted lines), at the 95th percentile
(red dotted lines), mean (black dotted lines), and the 5th percentile (blue dotted lines).

4.3 Theoretical and empirical endowments

The theoretical analysis derives three endowments, r∗, r, and ro. We now use the data to

see which of these is the best match to the empirically observed endowments. We use two

measures: the comparison with the VCG revenue that these endowments imply versus that

implied by the empirical endowments, and the Kullback–Leibler distance measure that is

commonly used to formalize how good one distribution matches another one.

We start with the comparison of VCG revenues. Figure 3 displays the revenue implied

by the empirical endowments by diamond-shaped markers, and the dotted black, blue and

red lines correspond to the revenues implied by r∗, r, and ro, respectively.

Figure 3 shows that each of the three theoretical endowments generates more revenue than
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Figure 3: Comparing the revenues implied by the empirical endowments (diamond shaped
markers) with the revenues implied by r∗ (dotted black line), r (dotted blue line), and ro

(dotted red line).

the empirical endowment and that, measured by the implied revenue, r is the best match to

the empirical endowment, suggesting that grandfathering may be a good approximation to

the process that generates these data. Further, because as mentioned grandfathering results

in relatively low trading volumes, this observation contrasts with the common interpretation

that high (low) empirical trading volumes indicate successful (unsuccessful) emission markets

(see, e.g., Zhang et al., 2020). Figure 3 also shows that ro is associated with the largest

revenue. This happens because there are many firms with small maximum demands, which

means that overendowing those firms results in a reallocation mechanism with little private

information by the owners. Thus, the reallocation stage resembles a one-sided auction.

Next, we directly compare the average empirical endowments with the theoretical ones.

Because the overendowment ro is not a good match empirically, we confine attention to r∗

and r. Figure 4 displays the average empirical endowments by the wide white bars, r∗ by

thin black bars, and r by blue bars. As the figure shows, the distributions of the endowments

of all three types across facilities share a similar shape.

To more formally compare theoretical and empirical endowments, we now treat each fa-

cility as a state in a probability space and its endowment as the probability measure assigned
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to that state. This then allows us to compare the resulting distributions of endowments us-

ing Kullback–Leibler (KL) distance, which is commonly used as a measure of dissimilarity

between two probability distributions. The KL distance is equal to zero for two identical

probability distributions, and its absolute value increases as the dissimilarity increases. Using

the average empirical endowment as the reference distribution, the KL distance between the

average empirical endowment with r∗ is 0.2193, while the KL distance between the average

empirical endowment with r is 0.2074. As a point of reference, the KL distance between the

empirical endowment and a completely uniform endowment—in which each facility receives

a share of 1/57—is 1.3705. This shows that the average empirical endowment is close to r∗

and r, consistent with our observation from Figure 4 and the notion that grandfathering is

a good approximation to the data generating process.

Figure 4: Comparing the empirical endowments (average across time, wide white bars) with
r∗ (thin black bars) and r (blue bars).

5 Extension to allow investment

An important policy question is whether emission permits and associated emission markets

diminish incentives to invest in emission abatement. With this in mind, we now amend the
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setup to allow investment and to consider the effects of endowments on investment incen-

tives. We show here that an efficient consignment auction—or any efficient mechanism as

foreshadowed by footnote 25—gives agents exactly the right incentives to invest; so any ar-

gument about suboptimal incentives to invest due to emission markets must be an argument

that these markets are not efficient.

Without denying political economics arguments against the use of auctions, Cramton and

Kerr (2002) raise concerns regarding incentives for innovation when permits are given away

to specific groups because under a direct auction of permits by the authority, “innovators do

not receive scarcity rents, so they unambiguously benefit from the innovation-induced fall in

permit prices” because these rents are collected as revenue by the authority. In contrast, “in

a grandfathered system the scarcity rents belong to the industry, so there is no aggregate

gain to industry from reducing them” (Cramton and Kerr, 2002, p. 340). We now show that

an efficient consignment auction provides incentives for efficient investment.

To incorporate investment, we assume that the agents have investment options to reduce

their abatement costs. We model this by assuming that each agent’s investment (or effort)

affects its own distribution. We denote by Ci(e) agent i’s cost associated with investment

e ≥ 0 and let Fi(·; e) be its type distribution with an investment e, whose density we denote

by fi(·; e). We allow fi(·; e) to vary with e but assume that the support [θ, θ] is independent

of investments. For each i ∈ N , we assume that fi(θ; e) > 0 for any e ≥ 0 and any θ ∈ (θ, θ),

which is analogous to the assumptions in the model without investment.

We assume that investments are not observable and that the market mechanism can

condition on equilibrium investments. Because investments are not observable, the market

mechanism does not vary with off-equilibrium investments.

We first consider the designer’s problem of maximizing ex ante expected welfare under

the assumption that upon investments e = (e1, . . . , en), efficient reallocation is possible. Re-

calling that W (θ) denotes social welfare at type profile θ, the designer’s optimal investments
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maximize

W I(e) =

∫
[θ,θ]n

W (θ)f(θ; e)dθ −
∑
i∈N

Ci(ei),

where f(θ; e) ≡ ×i∈Nfi(θi; ei) denotes the joint density. We denote by e a solution to

the designer’s problem maxeW
I(e). We impose the minimal assumption that e exists. In

particular, we require neither that e is given by first-order conditions nor that it is unique.

Next, we consider the investment game, in which for a given endowment r, the agents

simultaneously choose investments e. After investments are chosen, agents’ types are re-

alized, and they participate in an ex post efficient market. Given equilibrium investments

e, we denote by qi(θ; e−i) agent i’s interim expected allocation under ex post efficiency,

which is independent of i’s investment. Adapting the insight underlying Lemma 1 that

qi(θ̂i) = min{ri, ki} to the model augmented by investments, it follows that for a given ri,

agent i’s worst-off type θ̂i(e−i) is such that

qi(θ̂i(e−i), e−i) = min{ri, ki}.

Note that θ̂i(e−i) does not depend on ei because qi(θ; e−i) is independent of ei.

Relying on the payoff equivalence theorem, we can focus without loss of generality on the

VCG mechanism. The VCG transfer for agent i at the type profile θ when its worst-off type

is θ̂i(e−i) is Tr,i(θ) = Qi(θ)θi −W (θ) + W (θ̂i(e−i),θ−i) −min{ri, ki}θ̂i(e−i) (see the proof

of Theorem 1). Accordingly, agent i’s payoff at type profile θ is

W (θ)−
(
W (θ̂i(e−i),θ−i)−min{ri, ki}θ̂i(e−i)

)
.
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Consequently, i’s investment problem given e−i is to maximize

U I
i (e) =

∫
[θ,θ]n

W (θ)f(θ; e)dθ − Ci(ei)

−
∫

[θ,θ]n−1

(
W (θ̂i(e−i),θ−i)−min{ri, ki}θ̂i(e−i)

)
f−i(θ−i; e−i)dθ−i,

where f−i(θ−i; e−i) ≡ ×j 6=ifj(θj; ej) is the joint density of θ−i. Thus, e∗ is a Nash equilibrium

outcome of the investment game if and only if for all i ∈ N , e∗i ∈ arg maxei U
I
i (ei, e

∗
−i). The

key observation is that

U I
i (e) = W I(e) +K(e−i),

where K(e−i) is constant with respect to ei; that is, K(e−i) is independent of ei. Notice

that e being a Nash equilibrium of the investment game means that U I
i (e) ≥ U I

i (ei, e−i) for

all ei ≥ 0. Using the definition of U I
i (e), this is equivalent to W I(e) ≥ W I(ei, e−i) for all

ei ≥ 0, which is the case by the definition of e.37

Let θ̂(e) be the unique number between θ and θ such that
∑

i∈N qi(θ̂(e); e−i) = 1, and

denote by

r∗e = (q1(θ̂(e); e−1), . . . , qn(θ̂(e); e−n))

the associated optimal endowments. It follows that given endowments r∗e and investments

e, the market does not run a deficit ex post and a positive budget surplus in expectation,

where the expectation is taken with respect to f(θ; e). Summarizing, we have shown:

Proposition 7. The investment game has a Nash equilibrium in which each agent i chooses

e∗i = ei. Moreover, given endowments r∗e, in this equilibrium, for all θ, Π(θ, r∗e) ≥ 0, and

37The intuition is that Nash equilibrium imposes less stringent conditions than the de-

signer’s optimum. For example, if the designer’s solution is given by first-order conditions,

the designer needs to account for cross-partials whereas in a Nash equilibrium players do not

account for the effects of their actions on other players’ payoffs, implying that only second

own partials need to be taken into account.
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Πr∗e
> 0.

It follows from Proposition 7 and our assumptions about investments that any argument

that markets distort investment incentives away from the first-best must be an argument

that these markets are not efficient. In addition, intuition gleaned from complete-information

models suggesting that there is a tradeoff between the efficiency of markets and investments

is misleading: efficient markets with incomplete information imply efficient investments, and

so that tradeoff does not arise.

6 Conclusion

Consignment auctions are widely used but raise questions from a theoretical perspective

given that authorities could alternatively allocate efficiently via an efficient, standard auc-

tion. Taking a mechanism design perspective, we show that with appropriately determined

endowments, consignment auctions are politically more palatable than standard auctions be-

cause they leave the firms better off without sacrificing efficiency. This approach also shows

that efficient consignment auctions imply that the firms’ incentives to invest in abatement

technologies are aligned with the first-best. A simple calibration to data from Southern

California’s RECLAIM market shows that our assumption that the firms’ endowments are

such that the VCG reallocation mechanism does not run a deficit is upheld empirically. It

further shows that of the three theoretical endowment structures that we considered, the

one corresponding to grandfathering matches the empirical endowments best.

Interesting avenues for future research include relaxing the assumption of constant marginal

values, which underlies our analysis, and allowing for a misalignment between maximizing

participating firms’ profits and social surplus. If such a misalignment can be fixed through

the use of set-asides or bid credits, this raises in turn the question of which endowments, if

any, permit efficient reallocation in the second stage without running a deficit.
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A Appendix: Proofs

A.1 Proof of Lemma 1

Standard arguments imply that given ri, i’s worst-off satisfies qi(θ̂i) = min{ri, ki}; Section

1.1 in the Online Appendix provides the derivation.
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Because
∑

i∈N qi(θ) < 1 <
∑

i∈N qi(θ),
38 the continuity and monotonicity of the qi(·)

imply that there exists a unique θ̂ ∈ (θ, θ) such that
∑

i∈N qi(θ̂) = 1. Because qi(θ) ∈ [0, ki]

for all θ, it then follows that for all i ∈ N , qi(θ̂) ∈ [0, ki]. Further, it cannot be that

qi(θ̂) ∈ {0, ki} for all i ∈ N : if all are equal to ki, then by our assumption of excess demand,∑
i∈N qi(θ̂) > 1, which is a contradiction; and if qj(θ̂) = 0, then θ̂ = θ, and so qi(θ̂) = 0 for all

i ∈ N , implying that
∑

i∈N qi(θ̂) = 0, which is also a contradiction. Thus, letting r∗i = qi(θ̂)

for all i ∈ N and using qi(θ̂i) = min{ri, ki}, we have proven the statement in the lemma. �

A.2 Proof of Proposition 1

In the first part of the proof, we formalize the constrained optimization problem. Let ui(θi, r)

denote agent i’s interim expected payoff from the consignment auction, not including agent

i’s outside option θiri: ui(θi, r) ≡ qi(θi)θi − ti,r(θi). By the payoff equivalence theorem and

the definition of θ̂i and letting individual rationality bind for type θ̂i, we have

tr,i(θi) = qi(θi)θi −
∫ θi

θ̂i(ri)

qi(x)dx− θ̂i(ri)ri, (A.1)

38To see that
∑

j∈N qj(θ) < 1, first note that qi(θ) = max{0, 1 −
∑

j 6=i kj}. If for all i,

1 −
∑

j 6=i kj ≤ 0, then we are done because
∑

j∈N qj(θ) = 0 < 1. If not, then let i be such

that 1−
∑

j 6=i kj > 0. Then qi(θ) = 1−
∑

j 6=i kj. Also note that qi(θ) < ki by the assumption

that
∑

j∈N kj > 1. If i is the only agent with 1−
∑

j 6=i kj > 0, then we are also done because∑
j∈N qj(θ) = qi(θ) < ki < 1. If i is not the only one, let ` be the only other one. Then

q`(θ) < k` and
∑

j∈N qj(θ) = qi(θ) + q`(θ) < qi(θ) + k` < 1. And so qi(θ) = 1−
∑

j 6=i kj. By

induction on the number of agents with 1−
∑

j 6=i kj > 0, we have
∑

j∈N qj(θ) < 1.
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which implies that the ex ante expected budget surplus generated in the consignment auction

is

Eθ

[∑
i∈N

(
qi(θi)θi −

∫ θi

θ

qi(x)dx

)]
+
∑
i∈N

(∫ θ̂i(ri)

θ

qi(x)dx− θ̂i(ri)ri

)
. (A.2)

The first component of (A.2) is determined by exogenous parameters, that is, Fi and ki, and

the interim expected efficient allocation qi(θi). Maximizing (A.2) thus requires maximizing

the second component of (A.2). Letting

∆(k) ≡

r ∈ Rn |
∑
i∈N

ri = 1 and ∀i ∈ N , max{0, 1−
∑

j∈N\{i}

kj} ≤ ri ≤ ki

 ,

the problem of maximizing the expected budget surplus generated in the consignment auction

is

max
r∈∆(k)

∑
i∈N

[∫ θ̂i(ri)

θ

qi(x)dx− θ̂i(ri)ri

]
.

The Lagrangian for this problem is

L(r, µ,λo,λN) =
∑
i∈N

[∫ θ̂i(ri)

θ

qi(x)dx− θ̂i(ri)ri

]

+ µ(
∑
i∈N

ri − 1) +
∑
i∈N

λoi (ri −max{0, 1−
∑

j∈N\{i}

kj})−
∑
i∈N

λNi (ri − ki).

The Karush–Kuhn–Tucker conditions are as follows:

(a) (stationarity) ∀i ∈ N , ∂L
∂ri

= 0, i.e., for all i ∈ N , θ̂i(ri) = µ+ λoi − λNi ;

(b) (complementary slackness) for all i ∈ N , λoi (ri − max{0, 1 −
∑

j∈N\{i} kj}) = 0 and

λNi (ri − ki) = 0;

(c) (primal feasibility) r ∈ ∆(k);

(d) (dual feasibility) for all i ∈ N , λoi , λNi ≥ 0.
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To characterize the local maxima, we examine three exhaustive cases depending on the

signs of λoi and λNi :

Case 1. For all i ∈ N , λoi = λNi = 0. Lemma 1 shows that this is a feasible solution. The

concavity of the objective function in ri ensures that r∗ characterizes a local maximum.

Case 2. For some i ∈ N , λoi > 0 and for all i ∈ N , λNi = 0. Let No ≡ {i ∈ N | λoi > 0}.

Then stationarity implies that for all i ∈ No, θ̂i(ri) = µ+ λoi , and for all i ∈ N c
o , θ̂i(ri) = µ.

By the definition of θ̂i and complementary slackness, we then have for all i ∈ No,

qi(µ+ λoi ) = max{0, 1−
∑

j∈N\{i}

kj},

and for all i ∈ N c
o , qi(µ) = ri. Then primary feasibility implies that

∑
i∈No

qi(µ+ λoi ) +
∑
i∈N c

o

qi(µ) = 1.

If such µ exists, then for all i ∈ No and for any type x ≤ µ+λoi , we have qi(x) = qi(µ+λoi ) =

max{0, 1 −
∑

j∈N\{i} kj}. Thus, for all i ∈ No, we have qi(µ) = qi(µ + λoi ), and hence,∑
i∈No

qi(µ) +
∑

i∈N c
o
qi(µ) = 1. The corresponding local maximum ri = qi(µ) for all i ∈ N

is the interior solution r∗ with θ̂ = µ.

Case 3. For some i ∈ N , λoi > 0, and for some i ∈ N , λNi > 0. Define No as in Case

2 and define NN ≡ {i ∈ N | λNi > 0}. Then stationarity implies that for all i ∈ NN ,

θ̂i(ri) = µ− λNi , for all i ∈ No, θ̂i(ri) = µ + λoi , and for all i 6∈ No ∪ NN , θ̂i(ri) = µ. By the

definition of θ̂i and complementary slackness, we then have ∀i ∈ NN ,

qi(µ− λNi ) = ki, (A.3)
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for all i ∈ No and j 6∈ No ∪NN ,

qi(µ+ λoi ) = max{0, 1−
∑

j∈N\{i}

kj}, (A.4)

and

ri = qi(µ). (A.5)

Because fi(θ) > 0 for all θ ∈ [θ, θ], (A.3) implies that µ > θ. Then equations (A.4) and

(A.5) only hold if NN = N . However, this violates the primary feasibility that
∑

i∈N ri = 1.

Thus, a local maximum with λoi > 0 for some i ∈ N and λNj > 0 for some j ∈ N does

not exist. Therefore, the interior solution r∗ maximizes the expected budget surplus in the

consignment auction. �

A.3 Proof of Theorem 1

Take θ and r as given, assume that for all i ∈ N , θ̂i = θ̂ and fix an agent i ∈ N . When

the type profile is (θ̂,θ−i), social welfare under the efficient allocation for that type profile,

Q(θ̂,θ−i), is at least as large as the social welfare under the allocation Q(θ), because by

construction Q(θ̂,θ−i) maximizes social welfare given the type profile (θ̂,θ−i). That is,

W (θ̂,θ−i) ≥ W (θ) + (θ̂ − θi)Qi(θ), which is equivalent to

W (θ)−W (θ̂,θ−i) ≤ (θi − θ̂)Qi(θ). (A.6)

Because
∑

i∈N Qi(θ) = 1, summing up yields

∑
i∈N

(
W (θ)−W (θ̂,θ−i)

)
≤ W (θ)− θ̂. (A.7)

Substituting θ̂i = θ̂ for all i ∈ N into (1) and using min{ri, ki} = ri, which follows from

Lemma 1, yields Π(θ, r) = W (θ)− θ̂−
∑

i∈N

(
W (θ)−W (θ̂,θ−i)

)
≥ 0, where the inequality
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follows from (A.7). Because our initial choice of θ was arbitrary, Π(θ, r∗) ≥ 0 follows

because by Lemma 1 r∗ induces θ̂i = θ̂ for all i ∈ N . Because the inequality in (A.6) is

strict for a positive measure of types (To see this, note that (A.6) holds with equality only

if Qi(θ) = Qi(θ̂,θ−i), which only holds for a restricted set of θ given that θ < θ and fi > 0

for all i on (θ, θ).), Πr∗ > 0 follows. �

A.4 Proof of Proposition 2

We make use of the following lemma:

Lemma A.1. If k1 ≥ · · · ≥ kn and F1 ≤ · · · ≤ Fn, then qi(θ) ≥ qi+1(θ) for any θ ∈ [θ, θ].

Proof. Denote by Qi(x, y,θ−{i,i+1}) the ex post allocation to i when its type is x and i+ 1’s

type is y and all other agents’ types are θ−{i,i+1}; accordingly, in this instance, i + 1’s ex

post allocation is denoted Qi+1(y, x,θ−{i,i+1}), and then note that

qi+1(θ) = Eθi [Eθ−{i,i+1} [Qi+1(θ, θi,θ−{i,i+1})]] ≤ Eθi [Eθ−{i,i+1} [Qi(θ, θi,θ−{i,i+1})]]

≤ Eθi+1
[Eθ−{i,i+1} [Qi(θ, θi+1,θ−{i,i+1})]] = qi(θ),

whereQi(θ, θi,θ−{i,i+1}) in the second line denotes the allocation of firm i when firm i’s type is

θ, firm i+1’s type is θi, and the other types are θ−{i,i+1}. The first inequality follows because

ki+1 ≤ ki, implies Qi+1(x, y,θ−{i,i+1}) ≤ Qi(y, x,θ−{i,i+1}) for all θ ∈ [θ, θ]. The second

inequality follows from first-order stochastic dominance and Eθ−{i,i+1} [Qi(θ, θi+1,θ−{i,i+1})]

being nonincreasing in θi+1. �

Proposition 2 then follows as a direct result of Lemma A.1 and that the endowments r∗

imply same worst-off type for all agents. With strength-ordered agents, we have qi(θ) > qj(θ)

for any θ ∈ (θ, θ) and in particular for θ = θ̂. Thus, r∗i = qi(θ̂) > r∗j (θ̂) follows. �
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A.5 Proof of Proposition 4

The last part of proposition is an implication of the second, so we only need to show the

first two parts. For notational ease, let θi be i’s worst-off type given ri. From the definition

of the VCG transfers, we have Tr,i(θ) = W (θi,θ−i)− (W (θ)− θiQi(θ))− θiri.

We first establish interim individual rationality (IR). Because θi = arg minθi∈[θ,θ] Eθ−i
[θiQi(θ)−

Tr,i(θ)], it suffices to show that Eθ−i
[θiQi(θi,θ−i) − Tr,i(θi,θ−i)] ≥ θiri. Observe then that,

for any θ−i,

θiQi(θi,θ−i)− Tr,i(θi,θ−i) = θiri

holds. Thus, interim IR is satisfied. (Notice that this actually shows that for the interim

worst-off type θi, both the interim and the ex post IR constraints are satisfied. But this does

not imply that the ex post IR constraints are satisfied for all types since there is no reason

why θi should be the worst-off type ex post for all θ−i.)

Consider then the ex ante expected transfer from i. We have

Eθ[Tr,i(θ)] = Eθ[W (θi,θ−i)]− Eθ[W (θ)] + Eθ[θiQi(θ)]− θiri

≥ Eθ[(θi − θi)Qi(θ)] + Eθ[θiQi(θ)]− θiri

= θiEθ[Qi(θ)]− Eθ[θiQi(θ)] + Eθ[θiQi(θ)]− θiri = 0,

where the inequality follows because W (θi,θ−i)−W (θ) ≥ (θi− θi)Qi(θ) holds (for the same

reasons as (A.6) holds) and the last equality holds because Eθ[Qi(θ)] = ri. �

A.6 Proof of Proposition 5

We complete the proof in three steps. First, we show that ex ante revenue under the VCG

mechanism is nonnegative if agents share the common worst-off type θ̂ ≥ 0 and
∑

i∈N ri = α.
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This revenue, denoted, Π(θ, r, θ̂, α), is

Π(θ, r, θ̂, α) = W (θ)−
∑
i∈N

min{ri, ki}θ̂ −
∑
i∈N

(
W (θ)−W (θ̂,θ−i)

)
≥ W (θ)− αθ̂ −

∑
i∈N

(
W (θ)−W (θ̂,θ−i)

)
︸ ︷︷ ︸

≤W (θ)−θ̂

≥ (1− α)θ̂ ≥ 0.

The first inequality follows because
∑

i∈N min{ri, ki} ≤ α, which holds because
∑

i∈N ri = α

and so
∑

i∈N min{ri, ki} ≤
∑

i ri = α. The inequality in the underbrace expression is

established in (A.7) in the proof of Theorem 1 and implies the second-to-last inequality. The

last one follows from θ̂ ≥ 0 and α ≤ 1.

Second, we characterize the revenue-maximizing endowments r∗(α). The problem is

the same as that considered in Proposition 1 if one changes the feasibility constraint to∑
i∈N ri = α. We continue to have the result that there exists a common worst-off type

x satisfying
∑

i∈N qi(x) = α. We have previously shown that there is a unique solution to∑
i∈N qi(θ̂) = 1. Using α ∈ [0, 1], the result that for all i ∈ N , qi(x) increases in x, and

continuity, there is unique solution x to
∑

i∈N qi(x) = α, which defines the common worst-

off type, which we denote by θ̂(α). For all i ∈ N , qi(x) is nondecreasing in x. Hence, θ̂(α)

weakly increases in α, and strictly so if θ̂(α) > θ.

Third, we show that the optimal ex ante revenue decreases in the endowment fraction α.

The designer’s ex ante expected profit is (see equation (A.2)):

ΠH(α) =
∑
i∈N

Eθ

[
qi(θ)θi −

∫ θi

θ

qi(x)dx

]
+
∑
i∈N

∫ θ̂(α)

θ

qi(x)dx− αθ̂(α).

Using the envelope theorem, for all θ̂(α) > 0, Π′(α) = −θ̂(α) < 0, which establishes that the

ex ante expected revenue weakly decreases with α, and strictly so as long as θ̂(α) > 0. The

result that the firm’s payoff (weakly) increases in α follows from the facts that social welfare

remains the same and the value of each firm’s outside option, qi(θ̂(α))θ̂(α), increases. �

45




