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Abstract

Consider the problem of placing a valuable resource on a network before
demands are realized, anticipating costs of subsequent transportation. We say
that a node reach dominates another if it has cumulatively more neighbors for
any distance such that transportation could be ex post efficient. We show that
under IID demands, the placement that maximizes expected social surplus is
confined to reach dominant nodes. Given IID demands, the same holds for an
authority that maximizes expected profits and, if the resource is indivisible, for
an authority that uses a second-best reallocation mechanism. Stochastic reach
dominance generalizes reach dominance to account for different distributions
and distances between nodes. A universal impossibility result obtains: for suffi-
ciently high transportation costs, there is no initial placement that permits ex
post efficient reallocation, assuming that placement confers ownership and that
the reallocation mechanism must respect incentive compatibility, individual ra-
tionality, and no-deficit constraints.
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1 Introduction

Suppose some resources have to be placed at nodes in a network before demands are
realized, anticipating that reallocation will involve costly transportation. Examples
range from the placement of medical or military personnel and equipment before the
onslaught of a pandemic or an attack by enemy forces, to the placement of production
and storage facilities, to the allocation of resources within an organization or across
different firms, to the more mundane choice of hotel location by a tourist who does
not know which activities will be most attractive. Where should the resources be
placed? This is the question we address in this paper.

We assume that nodes in the network represent agents whose private values are
independent draws from commonly known distributions. Transportation occurs along
the edges of the network and involves a constant marginal cost, which, like the net-
work structure, is commonly known, and for most of the analysis, we assume that the
resources are divisible. To fix ideas, consider first the problem with identical distri-
butions, assuming that ex post efficient reallocation is always possible. This implies
that for any given initial resource placement, the resources are shipped to the agent
with the highest value net of transportation costs, which involves the possibility that
they are not shipped at all.

To see what governs the placement that maximizes expected social surplus, con-
sider first a network in the shape of the letter H, which has six nodes. The nodes at
the opposite ends of the horizontal line can be thought of as “uptown” and “down-
town” locations. If the transportation cost is so large that the resources are only
ever shipped the length of one edge, then the number of immediate neighbors of a
node entirely determines the value of placing the resources at that node. Because
the uptown and downtown nodes each has three immediate neighbors, while all the
other nodes only have one, it follows that the optimal placement can be confined to
these nodes when the marginal cost of transportation is sufficiently large. As this cost
decreases, eventually shipping the length of two nodes will sometimes be ex post effi-
cient. But, because these two nodes have more and closer neighbors than any of the
other nodes, optimal placement remains confined to them for any smaller marginal
cost of transportation.

More formally, we call the vector that contains the fraction of other nodes at
various distances a node’s reach vector. In the example of the H-network, the reach
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vectors is (3/5, 2/5) for each of the nodes at the opposite ends of the horizontal line,
and it is (1/5, 2/5, 2/5) for all the other nodes, using the convention of not displaying
elements that are zero. The nodes at the opposite ends of the horizontal line reach
dominate the other ones for any marginal cost of transportation because cumulatively
they have a higher fraction of nodes at distances of no more than k ∈ {1, 2, 3}
links away. As we show, if there are nodes that are reach dominant, then optimal
placements are confined to these, and optimal placements never involve nodes that are
reach dominated. A completely connected node has a reach vector that is simply (1),
which implies that when there are completely connected nodes, optimal placements
are confined to them. This means that, for example, in a star or wheel network, it is
optimal to place all resources at the hub.

In general, whether a node is reach dominant depends on the marginal cost of
transportation. To see this, consider a wide H-network in which there is an addi-
tional node—a “midtown” node— in the middle of the horizontal line, so that there are
seven nodes. The reach vectors of the downtown and uptown nodes are (3/6, 1/6, 2/6),
the reach vector of the midtown node is (2/6, 4/6), and the reach vector for all other
nodes is (1/6, 2/6, 1/6, 2/6). When the marginal cost of transportation is so large
that only shipments of length one are ever ex post efficient, the downtown and up-
town nodes are reach dominant. As shipments of length two or more become ex post
efficient, these nodes and the midtown node can no longer be ranked by reach dom-
inance. However, they always reach dominate the peripheral nodes, implying that
resources are never optimally placed at a peripheral node. One can show that for uni-
formly distributed values on the unit interval, the resources are optimally placed at
downtown and uptown nodes when the marginal cost of transportation is sufficiently
large and otherwise at the midtown node. This has the interesting and perhaps coun-
terintuitive feature that a reduction in transportation (or transaction) costs leads to
optimal placements in midtown, which has fewer close neighbors, but more neighbors
at intermediate distances than uptown and downtown.

If each agent is privately informed about its values and if placement does not confer
control, then the placement problem faced by an authority that maximizes profits,
subject to the agent’s incentive compatibility and individual rationality constraints,
is isomorphic to that faced by a social surplus maximizer. In particular, with identical
distributions, reach dominance governs the optimal placement. This follows because
profit maximization is equivalent to social surplus maximization, with true values
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replaced by virtual values.
If placing resources at a node confers control or ownership rights over the resources

to that node, then ex post efficient reallocation may not be possible, subject to in-
centive compatibility, individual rationality, and no-deficit constraints. We show that
ex post efficiency is never possible with extremal ownership and, more surprisingly,
for any ownership structure if the marginal cost of transportation is sufficiently large.
With this in mind, we first derive the constrained-efficient reallocation mechanism
and then use this mechanism to determine the optimal ownership structure, which,
loosely speaking, finds a balance between incentive and transportation costs. While,
in general, this optimal ownership structure is not determined via reach dominance,
we show that under IID, the reach dominance arguments extend to optimal owner-
ship if the marginal cost of transportation is sufficiently large or if the resource is
indivisible, as in the case of, say, a production plant.

Assuming that ex post efficient reallocation is always possible and that the au-
thority maximizes social surplus, the arguments underlying reach dominance extend
to heterogeneous distributions and links between nodes that are of different lengths.
The key is to replace the fraction of agents at a given distance from a node by the
distribution of the highest draw from the agents not further away from a node than
some given distance (including the agent at that node). The ranking is then based on
stochastic dominance, which is why we refer to this generalization as stochastic reach
dominance. We also show that the analysis extends to the case in which the cost of
transportation is a fixed cost, which seems an appropriate description, for example,
when the cost relates to difficulties of communication. While we use the interpretation
of transport costs, these costs can equivalently and more broadly be interpreted as
transaction costs above and beyond those associated with private information, with
nodes at further distances from each other representing, for example, firms that have
fewer ongoing transactions with one another.1

This paper relates to the literature on the (im)possibility of ex post efficient trade
initiated by Vickrey (1961) and Myerson and Satterthwaite (1983) and debates sur-
rounding the Coase Theorem (Coase, 1960). That extremal ownership prevents ex
post efficient trade follows from an extension of the impossibility theorem of Myerson
and Satterthwaite to costly transportation.2 That ex post efficient trade is not possi-

1Interpreted this way, our framework provides a network-based formalization of the transaction
costs and reallocation problems discussed in Cramton et al. (1998).

2It is also an extension of the bilateral trade setup to settings with multiple buyers and one
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ble for any ownership vector if the marginal cost of transportation is sufficiently large
is, to our knowledge, a new impossibility theorem. The fact that, if the marginal cost
of transportation is small, then the designer trades off incentive costs against trans-
portation costs, builds on the insight from the partnership literature that, without
costly transportation, ex post efficient trade is possible with appropriately structured
ownership; see, for example, Cramton et al. (1987), Che (2006), Segal and Whinston
(2011), or Figueroa and Skreta (2012). We show that this insight extends to costly
transportation, provided that the marginal cost of transportation is sufficiently small.
A precursor to our paper is Salant and Siegel (2015), which considers partnership
dissolution problems with reallocation costs. They analyze a more general family
of transportation costs, but do not model a network structure. Moreover, like the
aforementioned papers on partnership problems, they do not analyze second-best or
constrained-efficient mechanisms.

To solve the problem involving constrained-efficient reallocation mechanisms, our
paper builds on the work related to optimal trading mechanisms for asset markets—
problems in which each agent’s trading positions (buy, sell, remain inactive) are deter-
mined endogenously—and partnership models by Lu and Robert (2001), Loertscher
and Wasser (2019), and Liu et al. (2023).3 The related literature on networks includes
Akbarpour and Jackson (2018), which examines how diffusion patterns depend on the
network placement of heterogeneous agents, and Houde et al. (2023), which shows that
incentives for tax avoidance led Amazon to distort its distribution network in a way
that increased transportation costs.4

The remainder of this paper is structured as follows. Section 2 contains the setup
together with the definitions of the various problems of interest and basic results.
Sections 3 analyzes the problem when resource placement does not confer control
and Section 4 the problem when it does. Extensions are presented in Section 5, and
Section 6 concludes the paper.

seller, but that extension is already in the literature (see, e.g., Gresik and Satterthwaite, 1989).
3The term “asset market” has been used by Loertscher and Marx (2020, 2023), Delacrétaz et al.

(2022), and Liu et al. (2023). Analyses of asset market problems (that do not use that label) are
also provided by Lu and Robert (2001) and Li and Dworczak (2021).

4Condorelli et al. (2017) examine trade on a network, as do we, but their focus is on dynamic
bilateral bargaining with binary types and no transportation costs. For an analysis of the positioning
of disaster relief supplies at hospitals, see Wang et al. (2022), and on the positioning of granaries,
see Shiue (2004).

4



2 Setup

There are n agents indexed by i ∈ N ≡ {1, . . . , n} and a resource whose total
supply is 1. Each agent i ∈ N is located at a node in an undirected graph that
connects all agents, where dij ∈ {0, 1, . . . , n − 1} is the length of the minimum path
through the network between agents i and j (for all i ∈ N , dii = 0).5 Before trade
occurs, each agent i ∈ N holds a resource amount ri ∈ [0, 1] with

∑
i∈N ri = 1.

Each agent i has constant marginal value vi for the resource, which is independently
drawn from the distribution Fi. The support of Fi, denoted Vi, is bounded by 0 and
1 and contains both 0 and 1. Some of our analysis assumes that all agents draw
their values from the same distribution F , which is the IID case referred to above.
When analyzing incentive problems, like profit maximization or optimal ownership
problems, we assume that each agent i is privately informed about the realization of
its value vi and that for each i ∈ N , Fi is a continuous distribution with support
Vi = [0, 1] and density fi > 0. Let V ≡

∏
i∈N Vi denote the type space.6

We assume that the cost of transporting x ∈ [0, ri] units of the resource from agent
i to agent j is xcdij, where c ≥ 0 is the commonly known marginal transportation cost
per edge traveled. The n× n symmetric matrix C = (Cij)i,j∈N is the transportation
cost matrix, with component Cij representing the transportation cost between agents
i and j, where for all i, j ∈ N , Cij = Cji = cdij.

Two agents i and j are directly connected if dij = 1. A network is complete if
every agent is directly connected to every other agent. Agent i is said to be completely
connected if agent i is directly connected to every other agent, and we say that agent
i is maximally connected if no other agent is directly connected to a larger number
of other agents than is agent i. For example, the star network with n ≥ 3 agents is
defined as having agent 1 as the hub and a transportation cost matrix such that for
i > 1, C1i = c, and for 1 < i < j, Cij = 2c. A wheel network with n ≥ 5 agents is
a star augmented by a “ring road,” that is, agent 1 is the hub, and each agent at the
periphery is also directly linked to exactly two other peripheral nodes.

5Our results extend to directed graphs (see Section 5.3).
6These assumptions are imposed because the independent private values model has the property

of giving rise to a tradeoff between profits and social surplus based on the primitives of the model.
As Loertscher and Marx (2022a) note, in some sense, it is the only model that has this property:
without independence, Crémer and McLean (1985, 1988) show that full surplus extraction is possible
(see also Myerson, 1981) and, as shown by (Mezzetti, 2004, 2007), the same is true if one allows for
interdependent values even when maintaining the assumption of independent types.
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A trading mechanism 〈Q,M〉 consists of an allocation rule Q = (Qi)i∈N , where
Qi : V → [0, 1] with

∑
i∈N Qi(v) ≤ 1, and a payment rule M, where Mi : V → R.

Given types v, Qi(v) specifies agent i’s consumption after trade, and Mi(v) specifies
the payment made by agent i to the operator of the mechanism.

2.1 Ex post efficient trade

Given realized types v, define the n × n binary matrix V e(v), each of whose rows
sums to 1, by

V e
ij(v) ≡

{
1 if vj − Cij ≥ max` v` − Ci` and vj − Cij > max`<j v` − Ci`,
0 otherwise,

which uses the tie-breaking rule of prioritizing agents with a lower index. This choice
is arbitrary but without loss of generality. By definition, V e

ij(v) = 1 only if moving
agent i’s resources to agent j maximizes value net of transportation costs.

The ex post efficient allocation rule assigns to agent i the resources of agents j
with V e

ji(v) = 1, that is Qe
i,r(v) ≡

∑n
j=1 V

e
ji(v)rj.Maximized social surplus is therefore

SSer(v) =
n∑
i=1

n∑
j=1

(vi − Cji)V e
ji(v)rj, (1)

with expected value

sser ≡ Ev[SSer(v)] =
n∑
j=1

rjEv

[ n∑
i=1

(vi − Cji)V e
ji(v)

]
. (2)

Expected transportation costs under the ex post efficient allocation rule are

ter ≡
n∑
j=1

rjEv

[ n∑
i=1

CjiV
e
ji(v)

]
. (3)

2.2 Placement problems

In a placement problem, a central authority or social planner places resources with
agents before types are realized. In this setting, we refer to r as the placement vector.
The planner retains control over the resources, meaning that after agents’ types are

6



realized, the planner can direct the reallocation of resources subject to incentive com-
patibility and individual rationality constraints, where each agent’s outside option is
zero. Reallocation in the placement problem is thus a one-sided allocation problem in
which the agents are buyers. Because the planner can, for example, run a second-price
auction, where each agent’s bid is adjusted for the required transportation cost, the
reallocation phase always permits an incentive compatible and individually rational
solution that does not run a deficit.7

We consider objectives for the planner of either social surplus maximization or
profit maximization. In either case, the planner first places resources on the network
and then implements an incentive compatible, individually rational mechanism that
reallocates the resources and collects payment from the agents, with the planner pay-
ing for the associated transportation costs. A social-surplus-maximizing planner uses
the incentive compatible, individually rational mechanism that maximizes expected
social surplus net of transportation costs. A profit-maximizing planner uses the incen-
tive compatible, individually rational mechanism that maximizes its expected revenue
net of transportation costs. As mentioned, when analyzing profit maximization, we
assume that for each i, Fi has support [0, 1] and a positive density fi.

2.3 Ownership problems

In an ownership problem, a market designer determines resource ownership by the
agents, where ownership gives an agent property rights or control over the resources.
In this setting, we refer to r as the ownership vector. Then, following type real-
izations, the designer implements an incentive compatible, individually rational re-
allocation mechanism that does not run a deficit, i.e., the expected revenue to the
designer is sufficient to cover expected transportation costs. The individual ratio-
nality constraints affecting the mechanism vary with the resource ownership because
each agent’s outside option is to consume its owned resources. Thus, an ownership
problem is more constrained than a placement problem, where the agents’ outside
options are zero.

In an ownership problem, if there is extremal resource ownership, i.e., ri = 1

for some agent i, then the reallocation phase is a two-sided allocation problem with
one seller (agent i) and n− 1 buyers. In contrast, if resource ownership is dispersed

7By standard arguments, it can always be made to balance the budget; see, e.g., Börgers and
Norman (2009). A placement problem also arises if agents’ realized values are commonly known.
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among multiple agents, then the reallocation phase becomes what is sometimes called
an “asset market” because the trading positions of the agents—buy, sell, or do not
trade—depend, in general, on their own realized types and the realized types of all
other agents.

For some, but not all, ownership vectors, there exists an incentive compatible,
individually rational, deficit-free trade mechanism that implements ex post efficient
trade. For ownership vectors for which ex post efficient trade is not possible, a social-
surplus maximizing designer specifies the constrained-efficient mechanism, i.e., the
mechanism that maximizes expected social surplus subject to incentive compatibility,
individual rationality, and revenues that at least cover the transportation costs. A
profit-maximizing designer specifies the incentive compatible, individually rational
mechanism that maximizes the designer’s expected revenue from the agents net of
the transportation costs.

Our framework encompasses various, extensively studied and used models as spe-
cial cases. For c = 0, it collapses to a homogeneous good model in which the network
structure plays no role, implying that any placement permits the first-best and that
an optimal ownership structure exists that permits the first-best (see, e.g., Cramton
et al., 1987; Che, 2006; Figueroa and Skreta, 2012). With a complete network and
identical distributions, for c ≥ 0, any placement permits the first-best. A star network
preserves the property of the homogeneous good model that there is always only one
buyer (and hence only one cluster of trade) under ex post efficiency.

2.4 Virtual type functions

For the analysis involving constrained-efficient and profit-maximizing reallocation
mechanisms (defined below), we assume, beyond continuous distributions with den-
sities fi > 0 on [0, 1], that each agent i’s virtual type functions,

ΨB
i (v) ≡ v − 1− Fi(v)

fi(v)
and ΨS

i (v) ≡ v +
Fi(v)

fi(v)
,

are increasing. Despite this monotonicity of the virtual types, which corresponds to
what Myerson (1981) calls the “regular” case, the mechanism design problem in the
reallocation phase will not be regular away from extremal ownership.
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3 Optimal placement

In this section, we first characterize the optimal placement for a social-surplus-
maximizing planner, and then we consider the case of a profit-maximizing planner.

3.1 Optimal placement under social-surplus maximization

We first show that under social surplus maximization, extremal placement is always
optimal.

Extremal placement is always optimal

The linearity in r of social surplus under ex post efficient trade, SSer(v), which is
defined in (1), implies that its expectation, sser defined in (2), is also linear in r.8

This in turn implies that an extremal placement, i.e., ri = 1 for some i ∈ N , is
always optimal. We state this in the following proposition:

Proposition 1. The social-surplus maximizing placement problem has a solution
involving extremal placement followed by ex post efficient trade.

Proof. See Appendix A.

We refer to the social-surplus maximizing placement followed by ex post efficient
trade as the first-best. While extremal placement is not necessarily uniquely optimal,
and while in general not any extremal placement will be optimal, one extremal place-
ment always will be. Specifically, note that rn = 1−

∑n−1
i=1 ri and write expected social

surplus as a function of r−n ≡ (r1, . . . , rn−1, 1−
∑n−1

i=1 ri). If for some j ∈ {1, . . . , n−1}
we have

∂sser−n
∂rj

= maxh∈{1,...,n−1}
∂sser−n
∂rh

≥ 0, then the extremal placement rj = 1 is

optimal. Otherwise, that is, if
∂sser−n
∂rj

< 0 for all j ∈ {1, . . . , n− 1}, then the extremal

placement rn = 1 is uniquely optimal. If
∂sser−n
∂rj

= 0 for all j ∈ {1, . . . , n − 1}, as is
the case, for example, if c = 0 or in a complete network with identical distributions,
then any r is optimal.

8Linearity of SSer(v) and sser in r means that for any r, r′ and any α ∈ [0, 1], we have
SSeαr+(1−α)r′(v) = αSSer(v) + (1− α)SSer′(v) and sseαr+(1−α)r′ = αsser + (1− α)sser′ , respectively.
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Reach dominance and the first-best

For the remainder of this subsection, we assume that Fi = F for all i ∈ N . This is
mainly done for illustrative purposes since, as we show in Section 5.2, the key insights
and mechanics hold more generally.

To develop an understanding of what determines social surplus maximizing place-
ment, assume first that c ∈ (1/2, 1). In this case, only the immediate neighbors of an
agent are candidate trading partners for that agent. We denote by ni(1) the degree
centrality of agent i. This is the number of immediate neighbors of agent i divided by
n−1, where n−1 is the maximum possible number of immediate neighbors (Jackson,
2008, p. 38). It then follows that ri = 1 is optimal if and only if i has the maximum
number of immediate neighbors, that is,

ni(1) = max
j∈N

nj(1).

If there are multiple agents with the maximum number of immediate neighbors, then
optimal placement can be dispersed across these agents. For c less than 1/2, we also
have to take into account agents other than the immediate neighbors of agent i when
determining the value of having ri = 1. For any given c ∈ (0, 1), the maximum reach
that needs to be considered is min{d1/ce, n−1}, where dxe denotes the largest integer
no larger than x.

For any agent i, we let ni = (ni(1), . . . , ni(n− 1)) be the n− 1-dimensional vector
where for ` ∈ {1, . . . , n− 1},

ni(`) ≡
1

n− 1
|{j ∈ N | dij = `}| .

In words, ni(`) is the number of agents at distance ` from agent i, normalized by
n− 1. We refer to ni as the reach vector of agent i. Then for any i ∈ N , we have

n−1∑
j=1

ni(j) = 1.

Drawing on the concept of reach centrality from the graph theory literature, given
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k ∈ {1, . . . , n− 1}, agent i’s k-step reach centrality is:9

σi(k) ≡
k∑
j=1

ni(j).

We can then employ k-step reach centrality to define reach dominance: agent i reach
dominates (RDs) agent h given c if for all k ∈ {1, . . . ,min{d1/ce, n− 1}},

σi(k) ≥ σh(k), (4)

with a strict inequality for at least one k. Reach dominance induces an incomplete
order and is equivalent to first-order stochastic dominance, with better outcomes
having cumulatively higher probability.

Given c, let D(c) denote the set of of agents who are reach dominated by some
other agent. That is,

D(c) = {h ∈ N | ∃ i ∈ N s.t. i RDs h given c}.

If follows that if r is part of the solution of the planner’s problem, then rj = 0 for all
j ∈ D(c).

We define the (possibly empty) set of reach dominant agents given c, denoted T (c),
to be the set of agents such that any agent not in T (c) is reach dominated given c by
every agent in T (c) and for all i, j ∈ T (c) and all ` ∈ {1, . . . ,min{d1/ce, n− 1}}, (4)
holds with equality. For example, if c ∈ (1/2, 1), T (c) is the set of agents with the
maximum number of immediate neighbors.

Proposition 2. Assume identical distributions. Under the first-best, resources are
never placed with reach dominated agents. If the set of reach dominant agents is
non-empty, then under the first-best, resources are only placed with reach dominant
agents.

Proof. See Appendix A.

A first corollary to Proposition 2, is, as foreshadowed above:

9See, e.g., Borgatti et al. (2018, Chapter 10.3.5), Sosnowska and Skibski (2018).
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Corollary 1. Assume identical distributions. If c ∈ (1/2, 1), then the set of reach
dominant agents is non-empty and consists of the agents with the maximum number of
immediate neighbors. Further, if the set of completely connected agents is non-empty,
then for any c ∈ (0, 1), an agent is reach dominant if and only if it is completely
connected.

The reason is simple: completely connected agents are reach dominant for any
c ∈ (0, 1). Consequently, we have for the star and wheel networks:

Corollary 2. Assume identical distributions. For star and wheel networks with c ∈
(0, 1), it is uniquely optimal to place all resources at the hub.

As an illustration and application, begin by considering a line network with five
nodes. We label the three inner nodes from left to right as 1, 2 and 3 and the
peripheral nodes as 0 and 4 as shown in Figure 1(a). For this network, the reach
vectors are:

n1 = n3 = (2/4, 1/4, 1/4) , n2 = (2/4, 2/4) and n0 = n4 = (1/4, 1/4, 1/4, 1/4) .

It follows that agents 0 and 4 are reach dominated for any c by agents 1, 2, and 3. For
c ∈ (1/2, 1), T (c) = {1, 2, 3}, and for c < 1/2, T (c) = {2}. Thus, in this network, the
set of first-best placements is determined entirely by reach dominance. While T (c)

varies with c, it does so monotonically in the sense of set inclusion.
To see what happens beyond networks with this property, we amend the line

network by adding a link to node 1 and a link to node 3, which we denote by 0′ and
4′, respectively, as shown in Figure 1(b). For this “wide H network,” the reach vectors
are:

n1 = n3 = (3/6, 1/6, 2/6) , n2 = (2/6, 4/6) , and ni = (1/6, 2/6, 1/6, 2/6) ,

for i ∈ {0, 0′, 4, 4′}. The set of reach dominated agents now consists of the nodes
{0, 0′, 4, 4′}. For c ∈ (1/2, 1), T (c) = {1, 3}, and otherwise T (c) = ∅. Thus, for
c < 1/2, determining the optimal placement depends on c and requires computation.
It will, of course, be confined to agents that are not reach dominated. For example, for
F uniform on [0, 1], r1 = 1 and r3 = 1 (and r1 + r3 = 1) are optimal for c > 0.09, and
r2 = 1 is optimal otherwise. Thus, the set of nodes at which resources are optimally
placed varies with c in a nonmonotonic way. For c large, resources are placed with
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(a) Line network

0 1 2 3 4

(b) Wide H network

Figure 1: Panel (a): A network in which first-best placement varies monotonically with c. Panel (b):
A network in which first-best placement varies nonmonotonically with c.

agents 1 or 3, which have the most immediate neighbors. In contrast, when c is small,
agent 2, which has few immediate neighbors but has all agents within a distance of
two, is optimally the sole initial holder of the resources.

3.2 Optimal placement under profit maximization

While it is sensible to think of a planner as maximizing social surplus, it is also
conceivable that a planner, i.e., an entity that retains control of the resources after
placement, maximizes its expected profit, subject to the agents’ incentive compati-
bility and individual rationality constraints. With that in mind, we now examine the
profit-maximizing mechanism and placement for the planner. Its profit is defined as
payments from the agents minus transportation costs. We begin by taking the place-
ment as given and deriving the profit-maximizing mechanism, and then we optimize
over the placement. Throughout this subsection, we assume that for all i ∈ N , Fi
is a continuous distribution with support [0, 1] and density fi > 0 that exhibits an
increasing virtual value function ΨB

i (v).
Because the planner retains control over the resources, it acts as a seller with all

agents trading as buyers, including the agent with whom the resources are initially
placed. Thus, the planner’s optimal mechanism reallocates units to agents in order
according to their virtual values net of transportation costs if and only if the net
virtual value is positive. Specifically, the planner’s profit-maximizing allocation rule
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is given by

Qprofit
i,r (v) ≡

n∑
j=1

V profit
ji (v)rj,

where

V profit
ij (v) ≡


1 if ΨB

j (vj)− Cij = max` ΨB
` (v`)− Ci` ≥ 0

and ΨB
j (vj)− Cij > max`<j ΨB

` (v`)− Ci`,
0 otherwise,

which uses, again, the tie-breaking rule that prioritizes agents with a lower index. To
define the planner’s expected profit, it will be useful to have the following lemma,
which follows from standard mechanism design arguments:

Lemma 1. For the planner’s problem, given an incentive compatible mechanism
〈Q,M〉 with individual rationality binding for the worst-off types, agent i’s expected
payment to the mechanism is Ev[Mi(v)] = Ev

[
ΨB
i (vi)Qi(v)

]
.

Using Lemma 1, the expected profit to the planner not including transportation
costs is

Πprofit
r ≡ Ev

[ n∑
i=1

ΨB
i (vi)Q

profit
i,r (v)

]
=

n∑
j=1

rjEv

[ n∑
i=1

ΨB
i (vi)V

profit
ji (v)

]
,

and expected transportation costs are

tprofitr ≡
n∑
j=1

rjEv

[ n∑
i=1

CjiV
profit
ji (v)

]
,

giving the planner maximized expected profit conditional on r of Πprofit
r −tprofitr , which,

notably, is linear in r.
The key observation regarding optimal placement under profit maximization is a

simple isomorphism between maximizing expected social surplus and profit. To see
this, let F̃i(ψ) = Fi(Ψ

B−1

i (ψ)) for ψ ∈ (0, 1], and F̃i(ψ) = Fi(Ψ
B−1

i (0)) otherwise, be
the distribution of i’s virtual value, conditional on its being positive. Note that, just
like the values, the nonnegative virtual values are independent random variables with
support [0, 1]. The only difference is that the distributions of the nonnegative virtual
values are F̃i rather than Fi. Letting ψ = (ψ1, . . . , ψn), we then have V profit

ji (v) =

14



V e
ji(ψ) and thus

n∑
i=1

(
Ev[(ΨB

i (vi)− Cji)V profit
ji (v)]

)
=

n∑
i=1

(
Eψ[(ψi − Cji)V e

ji(ψ)]
)
.

This basic observation yields the corollaries that follow.10 The first one is an impli-
cation of Proposition 1:

Corollary 3. Extremal ownership is optimal for a profit-maximizing planner.

In the case of identical distributions, that is, Fi = F for all i ∈ N , we have
F̃i(ψ) = F̃ (ψ) for all i ∈ N and all ψ ∈ [0, 1], where F̃ (ψ) = F (ΨB−1

i (ψ)) for
ψ ∈ (0, 1], and F̃ (ψ) = F (ΨB−1

i (0)) otherwise. Proposition 2 then yields the next
corollary:

Corollary 4. Assuming identical distributions and a profit-maximizing planner, re-
sources are never placed with reach dominated agents, and if the set of reach dominant
agents is non-empty, then resources are only placed with reach dominant agents.

Our earlier Corollaries 1 and 2 also extend to the setting with profit maximization.
For example, in the wide H network with n = 7 shown in Figure 1(b) and uniformly
distributed types, for a social-surplus-maximizing planner, r1 = 1 and r3 = 1 are
both optimal for c ∈ (0.09, 1), but only r2 = 1 is optimal for c ∈ (0, 0.09). In the case
of a profit-maximizing planner, the range where r2 = 1 is uniquely optimal extends
to all c ∈ (0, 0.175). Thus, the profit-maximizing planner places resources with the
agent with fewer immediate neighbors (but with all agents within a distance of 2)
for a larger range of costs. As intuition, notice that the planner’s expected profit in
the profit-maximizing mechanism is the same as in the ex post efficient mechanism,
but with types drawn from different distributions, i.e., with agent i’s type drawn
from the distribution of ΨB

i (vi). Because ΨB
i (vi) < vi for vi ∈ [0, 1), it is as if the

profit-maximizing planner faces agents with a worse distribution. When facing a
worse distribution, the planner values having the extra “draws” within close range
(specifically within a distance of 2), that come with having the resources placed with

10The observation that profit and social surplus maximization are isomorphic in this sense was
made and exploited by Loertscher et al. (2022). Whether that was the first explicit formalization
of that fact we do not know. Clearly, it is implicit in the analysis of regular mechanism design
problems, such as optimal auctions or bilateral trade problems à la Myerson (1981) and Myerson
and Satterthwaite (1983).
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agent 2, rather than with agents 1 or 3. As the distribution becomes worse, having
access to additional type realizations becomes more valuable.11

4 Optimal ownership

We now consider ownership problems, which as mentioned above, arise when agents
are endowed with ownership of resources at their nodes. We first derive conditions for
ex post efficiency to be (im)possible. Then we derive the constrained-efficient mech-
anism when ex post efficient trade is not possible and characterize conditions under
which only constrained-efficient trade is possible. We then derive the optimal owner-
ship for a social-surplus-maximizing and a profit-maximizing designer. Throughout
this section, assume that for all i ∈ N , Fi is a continuous distribution with support
[0, 1] and density fi > 0.

4.1 Impossibility of ex post efficient trade

We begin by establishing two sets of impossibility results. The first, in the tradition
of Vickrey (1961) and Myerson and Satterthwaite (1983), is based on the observation
that ex post efficient trade is impossible under extremal ownership. This implies that
the first-best is not possible when the first-best dictates extremal ownership, which
is, for example, the case for the star and wheel networks with identical distributions.
Second, we show that ex post efficiency is impossible for any ownership vector when
c ≥ 1/2.

Impossibility with extremal ownership

Consider an extremal ownership vector in which r1 = 1, so that agent 1 is the seller
whenever there is trade. Trade between agent 1 and agent i ∈ {2, . . . , n} is ex post
efficient if and only if vi − C1i = maxj∈{2,...,n} vj − C1j and vi − C1i > v1. We denote

11For example, consider ex post efficient trade and types drawn from Fi = F , where F is the
uniform distribution on [`, 1], where ` < 1. Then for ` = 0, the problem is one of a social-surplus-
maximizing planner facing types drawn from the uniform distribution on [0, 1]. For ` = −1, the
problem is one of a profit-maximizing planner facing types drawn from the uniform distribution on
[0, 1] because in that case the agents’ virtual values are uniformly distributed on [−1, 1]. For the
wide H network, r2 = 1 is uniquely optimal for c ∈ (0, c(`)), and r1 = 1 and r3 = 1 are optimal
for c ∈ (c(`), 1), where c(`) is decreasing in `, implying that the range of costs for which r2 = 1 is
optimal decreases with `.
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by ieff the index of such an agent i. Consider then the market-clearing (Walrasian)
prices that establish ex post efficient trade given types v. Without loss of generality,
we let the seller bear the transportation cost.

If (pW1 , . . . , p
W
n ) is a Walrasian price vector, then it has to satisfy v1 + C1ieff ≤

pWieff ≤ vieff so that agent 1 is willing to pay the transportation cost C1ieff to sell to
agent ieff at price pWieff and so that agent ieff is willing to buy at this price. In addition,
for j ∈ {2, . . . , n}\{ieff}, Walrasian prices require that vj ≤ pWj so that agent j does
not want to buy at price pWj and pWj − C1j ≤ pWieff − C1ieff so that agent 1 does not
want to sell to agent j instead of agent ieff. Putting all of this together, the smallest
and largest Walrasian price, denoted pW and pW , are given as

pW ≡ max
j∈{2,...,n}\{ieff}

{v1, vj − C1j}+ C1ieff and pW ≡ vieff ,

respectively. As is reasonably well known and easily established, a trading buyer’s
payment in the VCG mechanism is pW and a trading seller’s payment is pW (see e.g.
Delacrétaz et al., 2022).12 Consequently, if trade occurs under ex post efficiency, then
the revenue of the VCG mechanism is

pW − pW ≤ 0,

where the inequality is strict unless maxj∈{2,...,n}\ieff vj−C1j = vieff−C1ieff . Because ties
have probability 0 with continuous distributions, it follows that the VCG mechanism
almost always runs a deficit when trade is ex post efficient (and never a budget
surplus). Consequently, in expectation, the VCG mechanism runs a deficit. Because
the ex post and hence interim expected payoffs are zero for buyers of type 0 and for
the seller of type 1, it follows that the VCG mechanism satisfies the interim individual
rationality constraints with equality. By the payoff equivalence theorem, this implies
that no other ex post efficient, (Bayesian or dominant strategy) incentive compatible,
and interim individually rational mechanism runs a smaller deficit. Because the VCG

12The gains from trade with agent ieff present, but excluding its value for the alloca-
tion, are −v1 − C1ieff , whereas gains from trade with agent ieff reporting a value of 0
are max{0,maxj∈{2,...,n}\{ieff} vj − C1j − v1}. Hence, the VCG transfer of agent ieff is
max{0,maxj∈{2,...,n}\{ieff} vj − C1j − v1} − (−v1 − C1ieff) = max{v1,maxj∈{2,...,n}\{ieff} vj − C1j}+
C1ieff = pW . Similarly, gains from trade with agent 1 present, but without its value for the allocation,
are vieff , whereas they are 0 with the seller reporting a value of 1. Hence, the VCG payment that
agent 1 receives is vieff = pW .
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mechanism runs a deficit, it follows that ex post efficiency is impossible for any
network when ownership is extremal. We summarize this in the following result:

Proposition 3. For any ownership problem with ri = 1 and c ∈ [0, 1), ex post
efficient trade is impossible.

Propositions 2 and 3 imply immediately:

Corollary 5. Assuming identical distributions and c ∈ (0, 1), the first-best cannot be
achieved in an ownership problem for any network with a single completely connected
agent.

Universal impossibility

Proposition 3 and Corollary 5 are, as foreshadowed, impossibility results in the tradi-
tion of Vickrey (1961) and Myerson and Satterthwaite (1983) because they depend on
extremal ownership. They imply that one will need to consider constrained-efficient
trade if ri = 1 for some i ∈ N . But they leave open the question of whether there
exist nonextremal ownership vectors that permit ex post efficient trade. Intuition
based on Cramton et al. (1987) may suggest that the answer is affirmative.

With that in mind, our next result is probably unexpected because it states that
for c ≥ 1/2, ex post efficient trade is impossible for any ownership vector.13 As
intuition for the result, note that under ex post efficiency, any agent of type v ≤ 1− c
ever only trades as a seller, and any agent of type v ≥ c ever only trades as a buyer.
Consequently, for c ≥ 1/2, agents with types v ∈ [1 − c, c] never trade and have
payoffs of 0. As a result, for c ≥ 1/2, the trading problem is not only ex post two-
sided but already ad interim—knowing only its type, every agent knows whether it
will trade as a buyer (if v > c) or as a seller (if v < 1 − c) if it trades and agents
with types between 1 − c and c know that they will never trade. As in the proof of
Proposition 3, it therefore suffices to verify that transportation costs are not covered
under VCG transfers, and that the VCG mechanism satisfies the agents’ ex post
individual rationality constraints with equality, which means that it also satisfies
interim individual rationality with equality.

Proposition 4. In an ownership problem, for c ≥ 1/2, ex post efficient reallocation
is impossible for any network and any ownership vector.

13 This uses our assumption that the support of the agents’ type distribution is [0, 1]. For a more
general support of [v, v], the required condition on transportation costs is that c ≥ (v + v)/2.
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Proof. See Appendix A.

Proposition 4 provides a simple sufficient condition for ex post efficient reallocation
to be impossible for any ownership structure. The result is thus a form of “Coase-
on-networks Theorem”: private information and sufficiently high transportation costs
combine to create insurmountable transactions costs because there is no ownership
structure that would permit efficient reallocation.

4.2 Possibility for small costs and dispersed ownership

We now provide a necessary and sufficient condition for ex post efficient trade to
be possible. To do so, it is useful to begin with two lemmas that characterize, for
any (Bayesian) incentive compatible mechanism, agents’ worst-off types and expected
payments to the mechanism.

Consider an incentive compatible mechanism 〈Q,M〉. Let qi(vi) ≡ Ev−i [Qi(vi,v−i)]

and mi(vi) ≡ Ev−i [Mi(vi,v−i)] denote the interim expected allocation and payment
of agent i when its type is vi. Accordingly, ui(v) ≡ qi(v)v − mi(v) − riv denotes
agent i’s interim expected gains from participation in the mechanism, net of its out-
side option. Incentive compatibility implies that qi is nondecreasing, from which it
follows that the first-order condition u′i(v) = qi(v) − ri = 0 characterizes a global
minimum for agent i’s interim expected payoff, provided that it is satisfied for some
v. The following lemma, a version of which was first established by Cramton et al.
(1987), characterizes the set of worst-off types for any allocation rule such that qi is
nondecreasing:

Lemma 2. Given an incentive compatible, individually rational mechanism 〈Q,M〉,
if there is a vi such that qi(vi) = ri, then the set of worst-off types for agent i is
{vi | qi(vi) = ri}. If qi(vi) 6= ri for all vi ∈ [0, 1], then the set of worst-off types for
agent i is the singleton set {vi | qi(v) < ri ∀v < vi and qi(v) > ri ∀v > vi}.

As observed by Cramton et al. (1987), intuitively, the worst-off type of an agent
expects on average to be neither a net buyer nor a net seller, and therefore an agent
with the worst-off type has no incentive to overstate or understate its valuation and
so does not need to be compensated to induce truthful reporting, which is why it is
the worst-off type.
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Given an incentive compatible mechanism, we can use standard mechanism design
techniques to write an agent’s expected payment to the mechanism in terms of its
worst-off type and its virtual type functions. Defining

Ψi(v;ω) ≡

{
ΨS
i (v) if v ≤ ω,

ΨB
i (v) if v > ω,

(5)

we have:

Lemma 3. Given ownership r and an incentive compatible trade mechanism 〈Q,M〉,
for any agent i and ωi ∈ [0, 1], agent i’s expected payment to the mechanism can be
written as

Ev[Mi(v)] = Ev [Ψi(vi;ωi)Qi(v)]− riωi − ui(ωi).

Proof. See Appendix A.

Letting ωei,r denote agent i’s worst-off type (or one of its worst-off types) under the
ex post efficient allocation rule Qe

i,r, and using Lemma 3, we obtain an expression for
the expected budget surplus (not including transportation costs) of an ex post efficient
reallocation mechanism that satisfies the agents’ individual rationality constraints
with equality14:

Πe
r ≡ Ev

[ n∑
i=1

Ψi(vi;ω
e
i,r)Q

e
i,r(v)

]
−

n∑
i=1

ωei,rri.

Thus, ex post efficient reallocation is possible without running a deficit if and only if
Πe

r ≥ ter. It follows that the necessary and sufficient condition for the possibility of ex
post efficient reallocation is

Ev

[ n∑
i=1

n∑
j=1

(Ψi(vi;ω
e
i,r)− Cji)V e

ji(v)rj

]
≥

n∑
i=1

ωei,rri. (6)

Condition (6) implicitly defines the set of combinations of ownership vectors r and
transportation cost matrices C such that ex post efficient trade is possible. We can
use (6) to calculate, for a given r, the maximum c such that ex post efficient trade is
possible, denoted by cmaxn (r) (and defined to be −∞ if no such c exists). Further, for

14Saying that the individual rationality constraints are satisfied with equality is shorthand for
saying that these constraints are satisfied with equality for the worst-off type of each agent.
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each c ≤ maxr c
max
n (r), the boundary of the set of ownership vectors such that ex post

efficient trade is possible is defined by vectors r that satisfy (6) with equality. For
example, if we consider a star or wheel network with r = (r, (1− r)/(n− 1), . . . , (1−
r)/(n−1)), then for each r and each c ≤ maxr c

max
n (r), we can calculate the maximum

r, such that ex post efficient trade is possible, denoted by rn(c). We illustrate this in
Figure 2 for a star network and uniformly distributed types.

n=2

n=3

n=4

n=5

0. 0.04 0.08 0.12 0.16 0.2 0.24
c0.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.
r

Figure 2: First-best permitting region: values for (r, c) that permit ex post efficient reallocation
for star networks. As illustrated, r2(0) = 0.7887, r3(0) = 0.7654, r4(0) = 0.7647, and r5(0) =
0.7689. Further, cmax2 = 0.217, cmax3 = 0.187, cmax4 = 0.1675, and cmax5 = 0.150. Assumes r =
(r, 1−r

n−1 , . . . ,
1−r
n−1 ) and uniformly distributed types.

As illustrated in Figure 2, for a star network with n = 2 and c = 0, the first-best is
possible for all r ∈ [0.21, 0.79], which corresponds to the values obtained by Cramton
et al. (1987). While Figure 2 illustrates that rn(0) need not be monotone in n, if
one properly accounts for the expansion in the number of agents by calculating the
resources accounted for by the first x ∈ [0, 1] share of agents, giving us a distribution
of resources Gn defined by

Gn(x) ≡

{
nxrn(0) if x ≤ 1/n,

1− (1− x)n1−rn(0)
n−1 if x > 1/n,

then one finds that, at least for uniformly distributed types, Gn first-order stochas-
tically dominates Gn′ if n < n′ (see the Online Appendix). Thus, with more agents,
the boundary of R(0) shifts towards greater concentration at the hub.
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4.3 Constrained-efficient reallocation mechanism

An implication of Proposition 3 is that in an ownership problem, either ownership
is nonextremal or trade is not ex post efficient, or both. As shown above, for some
transportation costs, ex post efficient trade is not an option for any ownership vector.
This motivates us to characterize constrained-efficient reallocation mechanisms, which
we do now. As mentioned, this analysis assumes that for each i ∈ N , the virtual types
functions ΨB

i (v) and ΨS
i (v) are increasing.

The constrained-efficient reallocation mechanism maximizes the sum of the agents’
expected surpluses subject to incentive compatibility, individual rationality, and no
deficit, which requires that the expected budget surplus of the mechanism must be
sufficient to cover the expected transportation costs. To define the mechanism, it is
useful to introduce the notion of weighted virtual types and their ironed counterparts.
For a ∈ [0, 1] and threshold type ω ∈ [0, 1], we let

Ψi,a(v;ω) ≡ av + (1− a)Ψi(v;ω)

denote the weighted virtual type of agent i, with Ψi(v;ω) being given by (5). The
ironed weighted virtual type of an agent with type v and threshold type ω, denoted
Ψi,a(v;ω), is defined as

Ψi,a(v;ω) ≡


ΨS
i,a(v) if ΨS

i,a(v) < z,

z if ΨB
i,a(v) ≤ z ≤ ΨS

i,a(v),

ΨB
i,a(v) if z < ΨB

i,a(v),

where ΨS
i,a(v) ≡ av + (1 − a)ΨS

i (v) and ΨB
i,a(v) ≡ av + (1 − a)ΨB

i (v) are agent i’s
weighted virtual cost and virtual value functions and where the ironing parameter z
satisfies ∫ ω

0

max{0,ΨS
i,a(v)− z}dFi(v) =

∫ 1

ω

max{0, z −ΨB
i,a(v)}dFi(v). (7)

The constrained-efficient mechanism, as shown by Loertscher and Wasser (2019), is
the solution to a saddle-point problem that simultaneously chooses the allocation
rule to maximize expected social surplus given agents’ worst-off types, subject to
constraints, and chooses the agents’ worst-off types to minimize their expected payoffs
given the allocation rule.
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Focusing on the maximization problem for the moment, let ωi denote agent i’s
worst-off type. Then letting ρ be the Lagrange multiplier on the no-deficit constraint
and µi be the Lagrange multiplier on agent i’s individual rationality constraint, and
using Lemma 3, we have the Lagrangian

L ≡ Ev

[ n∑
i=1

(Qi(v)vi −Qi(v)Ψi(vi;ωi) + riωi + ui(ωi))

+ρ
( n∑
i=1

(Qi(v)Ψi(vi;ωi)− riωi − ui(ωi))− Tr(Q(v))
)]

+
n∑
i=1

µiui(ωi),

where Tr(Q(v)) is the total transportation cost under allocation rule Q and type
vector v when the ownership vector is r. Rearranging this, we have

L = ρEv

[ n∑
i=1

Qi(v)Ψi, 1
ρ
(vi;ωi)−Tr(Q(v))

]
+ (1− ρ)

n∑
i=1

riωi +
n∑
i=1

(1− ρ+µi)ui(ωi).

Given ω and ρ, we can then solve for Q pointwise, subject to the constraint that Q is
nondecreasing (thus, requiring ironing). Specifically, given Lagrange multiplier ρ and
worst-off types ω, the constrained-efficient reallocation rule for agent i is given by

Qce
i,r(v; ρ,ω) ≡

n∑
j=1

V ce
ji (v; ρ,ω)rj,

where V ce is defined analogously to V e, but with actual types replaced by ironed
virtual types:

V ce
ij (v; ρ,ω) ≡


1 if Ψj,1/ρ(vj;ωj)− Cij ≥ max` Ψ`,1/ρ(v`;ω`)− Ci`

and Ψj,1/ρ(vj;ωj)− Cij > max`<j Ψ`,1/ρ(v`;ω`)− Ci`,
0 otherwise,

where, as before, ties are broken in favor of agents with a lower index. Using Lemma
3, the expected budget surplus under binding interim individual rationality is

Πce
r (ρ,ω) ≡ Ev

[ n∑
i=1

Ψi(vi;ωi)Q
ce
i,r(v;ρ,ω)

]
−

n∑
i=1

ωiri.
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Expected transportation costs under the constrained-efficient allocation rule are:

tcer (ρ,ω) ≡ Ev

[ n∑
i=1

n∑
j=1

CjiV
ce
ji (v; ρ,ω)rj

]
.

Given this, we can state the following result:

Proposition 5. The constrained-efficient reallocation rule is the same as the ex post
efficient reallocation rule if Πe

r ≥ ter, and otherwise it is defined by Qce
r (v; ρ∗,ω∗),

where ω∗ and ρ∗ are such that for all i ∈ N , Ev−i [Q
ce
i,r(ω

∗
i ,v−i; ρ

∗,ω∗)] = ri and
ρ∗ = arg minρ{ρ ≥ 1 | Πce

r (ρ,ω∗) ≥ tcer (ρ,ω∗)}.

The constrained-efficient reallocation mechanism has the allocation rule specified
by Proposition 5 along with the payment rule given by Lemma 3, with ω equal to ω∗.
Figure 3 illustrates the contrast between the ex post efficient and constrained-efficient
reallocation rules for the case of two agents. In setups with identical distributions
and no transportation costs, the constrained-efficient reallocation rule coincides with
the ex post efficient reallocation when both agents have small values and when both
agents have large values if ironing occurs in the interior (see Loertscher and Wasser,
2019; Loertscher and Marx, 2022b). To see this, assume v1 > v2 and observe that
under the optimal mechanism with c = 0 trade occurs if and only if ΨS

1,a(v1) > ΨS
2,a(v2)

when both types are small, respectively ΨB
1,a(v1) > ΨB

2,a(v2) when both types are large.
With identical distributions this is equivalent to v1 > v2.

Interestingly, this feature does not extend to a settings with positive transporta-
tion costs, in which case it is easy to obtain, locally, more trade than under ex post
efficiency. To see this, assume ironing occurs in the interior and consider v1 and v2
with v1 > v2, both of which are sufficiently small so that trade of r2 occurs if and
only if ΨS

1,a(v1) > ΨS
2,a(v2) + c, which is equivalent to

v1 > v2 + (1− a)

[
F (v2)

f(v2)
− F (v1)

f(v1)

]
+ c. (8)

Under the constrained-efficient mechanism, a = 1/ρ∗ < 1, and so if F/f is increasing,
then the right side of (8) is smaller than v2 + c, which is the condition for trade under
ex post efficiency. (And when both types are large, trade of r2 occurs if and only if
v1 > v2+(1−a)

[
1−F (v1)
f(v1)

− 1−F (v2)
f(v2)

]
+c, whose right side is less than v2+c if (1−F )/f

is decreasing.) These hazard rate properties are satisfied, for example, by the uniform
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distribution. This possibility of locally excessive trade is illustrated in Figure 3(c)
for uniform distributions. At the boundaries, the contours of the constrained-efficient
reallocation lie “inside” the contours for ex post efficiency.15

(a) Ex post efficiency
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(b) Constrained efficiency
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Figure 3: Efficient and constrained-efficient reallocation rules. Assumes n = 2, r = (0.5, 0.5), and
uniformly distributed types. The constrained-efficient results for c = 0.25 use ρ∗ = 1.06 and ironing
parameters z∗1 = z∗2 = 0.5. For c = 0.1, ex post efficiency is possible.

Figure 3 illustrates two of the three effects that reductions in the marginal cost
of transportation have. First, as shown in Panel (a), decreasing c increases trade
under ex post efficiency and thereby social surplus. Second, in an ownership problem
reductions in c make the market work better. This is illustrated in Panel (b), where
ex post efficiency is possible for c = 0.1 but not for c = 0.25. The third effect
that reductions in the marginal transportation cost have is via the optimal ownership
structure, which is what we analyze next.

4.4 Optimal ownership under social-surplus maximization

It is useful to define three sets of ownership vectors, parameterized by the trans-
portation cost by c. First, let R(c) be the possibly empty set of ownership vectors
satisfying (6), where ex post efficient trade is possible. Second, let RP (c) denote

15This possibility of locally excessive trade depends simultaneously on transportation costs and
on the ironing ranges being interior. For example, if c > 0 is the fixed cost of producing a public
good, then in the optimal mechanism, production occurs if and only if

∑n
i=1 ΨB

i,a(vi) > c, which for
any a < 1 is more restrictive than the condition for production under ex post efficiency. Likewise,
if c is a transportation cost but ironing ranges are at the bounds, for example because r2 = 1, then
trade occurs if and only if ΨB

1,a(v1) > ΨS
2,a(v2) + c, where for any any a < 1, the left side is less than

v1 and the right side is larger than v2 + c.
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the set of optimal placement vectors, and, third, let RO(c) denote the set of optimal
ownership vectors.

We consider different levels of transportation cost in turn, beginning with a result
for the case of zero transportation costs. In that case, any ownership vector that
allows ex post efficient trade is optimal in the ownership problem:

Proposition 6. For c = 0, the ownership problem with a social-surplus-maximizing
designer is solved by any r ∈ R(0), i.e., RO(0) = R(0).

Further, for a network with one completely connected agent, for c ∈ (0, 1), RP (c)

contains only extremal ownership, and using Proposition 3, R(0) does not contain
any extremal ownership. Thus, by continuity, in such a network, for c > 0 sufficiently
close to zero, the set of solutions to the ownership problem has an empty intersection
with the set of solutions to the placement problem:

Proposition 7. For a network with one completely connected agent, there exists
ĉ ∈ (0, 1) such that for all c ∈ (0, ĉ), RO(c) ∩RP (c) = ∅.

Turning to the case of sufficiently high transportation costs, we begin by noting
that this case is simplified by each agent having the same worst-off type.

Lemma 4. If c ≥ 1/2, then 1/2 is a worst-off type for every agent.

Proof. See Appendix A.

Using Proposition 5, the maximized objective under the constrained-efficient re-
allocation rule can be written as:

L∗(r) ≡ ρ∗Ev

[
n∑
i=1

n∑
j=1

(
Ψi, 1

ρ∗
(vi;ω

∗
i )− Cji

)
V ce
ji (v;ρ∗,ω∗)rj

]
(9)

+(1− ρ∗)
n∑
j=1

ω∗jrj +
n∑
j=1

(1− ρ∗ + µ∗j)uj(ω
∗
j).

For c ≥ 1/2, we have ω∗1 = · · · = ω∗n = 1/2, so in that case
∑n

j=1 ω
∗
jrj = 1/2, and

the only direct effects of r occur in the expression in (9) in square brackets. Further,
as the following lemma shows, we can rewrite the expectation of the term in square
brackets in (9) in terms of the ironed rather than unironed weighted virtual types:
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Lemma 5. For c ≥ 1/2 and Fi = F for all i ∈ N , the maximized objective L∗(r) can
be written as:

L∗(r) = ρ∗Ev

[ n∑
j=1

n∑
i=1

(
Ψi, 1

ρ∗
(vi; 1/2)− Cji

)
V ce
ji (v;ρ∗,1/2)rj

]
+

1− ρ∗

2
+

n∑
j=1

(1− ρ∗ + µ∗j)uj(1/2).

Proof. See Appendix A.

By the envelope theorem, only the direct effects of r matter. Using Lemma 5,
these are captured in the terms in square brackets. By an isomorphism that mirrors
the one observed above for optimal placement, we see that the expression in square
brackets in (9) (and in Lemma 5) is the same as the objective for the unconstrained
problem of maximizing

Ex

[ n∑
j=1

n∑
i=1

(xi − Cji)V e
ji(x)rj

]
,

where xi is drawn from the distribution of Ψi, 1
ρ∗

(vi; 1/2). Thus, we have the following
result:

Proposition 8. Assume identical distributions. Given c ≥ 1/2, optimal ownership
under social-surplus maximization is confined to reach dominant agents.

Because for c ≥ 1/2, the set reach of dominant agents is non-empty, Proposition
8 shows that optimal ownership under social-surplus maximization is pinned down
by reach dominance for sufficiently large marginal costs of transportation and iden-
tical distributions. For example, for the star and the wheel network, it implies that
ownership is concentrated at the hub for c ≥ 1/2 and identical distributions.

In cases in which ex post efficient trade is possible, we have ρ∗ = 1, and so

L∗(r) = Ev

[ n∑
j=1

n∑
i=1

(vi − Cji)V e
ji(v)rj

]
+

n∑
j=1

µ∗juj(ω
∗
j),

where again the term in square brackets is the objective for the unconstrained prob-
lem and so solved with extremal ownership. Thus, for a star or wheel network with
solution to the ownership problem of rO = (r, 1−r

n−1 , . . . ,
1−r
n−1) and identical distribu-

tions, if the solution to the ownership problem involves ex post efficient trade, then
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the optimal ownership vector is on the boundary of the region permitting ex post
efficient trade, i.e., if rO ∈ R(c), then rO1 = max{r1 | rO ∈ R(c)}.

Combining these results, we see that for star and wheel networks, for a range of
intermediate values for c, the solution to the ownership problem has rO that does not
permit ex post efficient trade, and is not extremal, and so the solution is intermediate
between the solution to the ownership problem with c = 0 and with c ≥ 1/2. We
illustrate this in Figure 4.

(a) R(c) and rO(c) for a star network with n = 3

0. 0.1 0.2 0.3 0.4 0.5
c0.

0.2

0.4

0.6

0.8

1.
r

ℛ(c)

r
O(c)

Figure 4: Values for (r, c) that permit ex post efficient trade and rO(c). Assumes a star network
with n = 3, r = (r, 1−r2 , 1−r2 ), and uniformly distributed types.

4.5 Optimal ownership under profit maximization

We conclude this section with an analysis of a designer that seeks to maximize its
expected profit. This analysis continues to assume that for each i ∈ N , the virtual
types functions ΨB

i (v) and ΨS
i (v) are increasing.

Given worst-off types ω, the designer’s profit-maximizing allocation rule QD is
defined analogously to Qce, but with the ironed weighted virtual types replaced by
the ironed unweighted (i.e., weight equal to zero) virtual types:

QD
i,r(v;ω) ≡

n∑
j=1

V D
ji (v;ω)rj,
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where V D is defined by

V D
ij (v;ω) ≡


1 if Ψj,0(vj;ωj)− Cij ≥ max` Ψ`,0(v`;ω`)− Ci`

and Ψj,0(vj;ωj)− Cij > max`<j Ψ`,0(v`;ω`)− Ci`,
0 otherwise,

as usual with tie-breaking in favor of agents with a lower index. Then we have the
following result:

Proposition 9. The designer’s profit-maximizing allocation rule is QD
r (v;ω∗), where

ω∗ is such that for all i ∈ N , Ev−i [Q
D
i,r(ω

∗
i ,v−i;ω

∗)] = ri.

Using Lemma 3, given ω, the expected profit to the designer not including trans-
portation costs is

ΠD
r (ω) ≡ Ev

[ n∑
i=1

Ψi(vi;ωi)Q
D
i,r(v;ω)

]
−

n∑
i=1

ωiri,

and expected transportation costs are:

tDr (ω) ≡ Ev

[ n∑
i=1

n∑
j=1

CjiV
D
ji (v;ω)rj

]
.

Thus, the designer’s maximized expected profit is

ΠD
r (ω∗)− tDr (ω∗),

where ω∗ is as defined in Proposition 9.
Turning to the optimal ownership vector for a profit-maximizing designer, note

that ownership affects not only transportation costs, but also the individual ratio-
nality constraint, which affects the profit-maximizing allocation rule. The tradeoffs
differ somewhat from the case of a social-surplus-maximizing designer because it is
as if the profit-maximizing designer faces agents with worse distributions, i.e., sellers
with higher types and buyers with lower types.
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5 Extensions

In this section, we provide extensions that consider the designer’s problem with an in-
divisible resource, define stochastic reach dominance for problems with heterogeneous
distributions and distances, allow for directed networks, and allow for fixed costs of
transportation per edge.

5.1 Reach dominance and optimal ownership

Characterizing the optimal ownership is, in general, plagued by the problem that
optimal ownership may be shared, which implies that the constrained-efficient mech-
anism varies nontrivially with r. The “asset market” nature of this mechanism renders
characterizing optimal ownership difficult in general. However, the problem simplifies
if the resource is indivisible, as is the case, for example, for a network with a single
production plant. In this case, ri = 1 for some i ∈ N . In this case, the constrained-
efficient reallocation mechanism is simply the constrained-efficient mechanism for a
two-sided allocation problem in which agent i is the seller and all other agents are
buyers. This constrained-efficient mechanism is an extension of the second-best mech-
anism derived by Myerson and Satterthwaite (1983) to a setting with multiple buyers
and costly transportation. We now show that, with identical distributions and an
indivisible resource, the optimal ownership is governed by reach dominance in the
same way as is the optimal placement.

Proposition 10. Assuming an indivisible resource and identical distributions, the
optimal ownership is confined to the set of reach dominant agents provided that this
set is non-empty, and reach dominated agents are never given positive ownership.

Proof. See Appendix A.

The proof shows that, with identical distributions, if agent i reach dominates
agent j, then the expected social surplus under the constrained-efficient reallocation
mechanism is larger when resources are owned by agent i. The argument relies on
a revealed preference argument that shows that the mechanism with ownership by
i could treat the agents the same way it does with ownership by j, thereby either
directly generating more social surplus or generating positive revenue, which can then
be used to increase social surplus by reoptimizing.16

16The argument is similar to the proof in Loertscher and Marx (2019) that shows that a merger
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5.2 Stochastic reach dominance

Our analysis of optimal placement based on reach dominance rested on the assumption
that the agents’ distributions were identical and, like the entire analysis up to this
point, that links were of equal length, implying that the cost of transportation between
any two neighbors is the same. We now show that both of these assumptions can be
dropped simultaneously without qualitatively altering the conclusions or mechanics
at work.

To this end, let us first allow for heterogeneous distributions while keeping the
length of each edge the same. For every agent i, let Ai(k) be the set of agents that
are k ∈ {0, 1, . . . ,min{d1/ce, n − 1}} links away from i, and let Ai(k) ≡ ∪kh=1Ai(h)

be the set of agents that are within k links of agent i. Denote by

Lik(v) ≡
∏

j∈Ai(k)

Fj(v)

the distribution of the highest draw among all neighbors of agent i that are not
farther away than k links. Accordingly agent (or node) i is said to stochastically
reach dominate (SRD) agent j given c if for all k ∈ {0, 1, . . . ,min{d1/ce, n− 1}} and
all v ∈ [0, 1]

Lik(v) ≤ Ljk(v) (10)

holds, with a strict inequality for some v and k. Stochastic reach dominance extends
the insight that more and closer neighbors are better, which holds under identi-
cal distributions, to something like “stronger agents with stronger, more, and closer
neighbors are better.” With identical distributions, reach dominance and stochastic
reach dominance are equivalent because having more draws and stochastic dominance
are equivalent with identical distributions.

To see that the concept of stochastic reach dominance extends straightforwardly
to settings in which links between agents are not necessarily of equal length, for any
distance x ∈ (0, 1/c) from i, one can define Ai(x) to be the set of agents not farther
away from i than x and, correspondingly, define Lix(v) =

∏
j∈Ai(x) Fj(v) to be the

distribution of the highest draw among i’s neighbors that are not farther away than
x. Then we say that i SRDs j if Lix(v) ≤ Ljx(v) holds for all x ∈ (0, 1/c) and all
v ∈ [0, 1], with strict inequality for some x and v. Replacing “reach dominance” with

between two suppliers harms a powerful buyer.
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“stochastic reach dominance,” Proposition 2 then extends to settings with heteroge-
neous distributions and distances.

5.3 Directed networks

The networks we analyzed thus far were undirected graphs. This means that resources
can be shipped in either direction along any given edge. For some applications, it
may be more appropriate to think of links as being directed, meaning that resources
can only be shipped in one direction, in which case each node is characterized by a
number of inbound and a number of outbound links. (Undirected graphs are thus
the special case of directed graphs with the property that every outbound edge is
paired with an inbound edge.) For example, it may be that resources can only be
shipped downhill, which would typically be the case for water. So if the resource
placement corresponds to setting up a dam to store water and c captures the amount
of water that is lost due to, say, evaporation, then a directed graph would be an
appropriate model. A moment’s reflection then reveals that our results pertaining
to reach dominance and stochastic reach dominance extend to directed graphs by
confining attention to outbound links and nodes and distributions along outbound
links.

5.4 Fixed cost of communication

In some applications, it is more appropriate to think of transportation as involving a
fixed cost per edge that is independent of the amount being shipped. For example, the
agent shipping and the agent receiving the good may need to communicate about the
specifics of the shipment and what it requires. This communication may be costly due
to lack of a common language or cultural differences, but once the cost is borne and
a common understanding is established, the shipment is free and hence the cost does
not vary with the quantity shipped. This kind of problem is pervasive for resource
(re-)allocation within organizations, where different units and departments have their
own culture and language.

If agents i and j are directly linked, then it is ex post efficient for agent i to ship
ri to agent j if and only if c < ri(vj − vi) or equivalently

vi +
c

ri
< vj.
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The larger is ri, the more likely is agent i thus to ship ri units to agent j under ex
post efficiency. Moreover, the gains from trade ri(vj − vi)− c increase in ri.

If c ∈ [1/2, 1), then with nonextremal placement, at most one agent will be able
to ship because c/ri ≥ 1 for any ri ≤ 1/2. If c ∈ [0, 1/2), then the analysis above
related to reach dominant agents applies. This gives us the following result:

Proposition 11. Assume identical distributions. In the model with a fixed cost per
edge, if c ∈ [1/2, 1), then optimal placement gives all resources to one agent; and if
c ∈ [0, 1/2), then optimal placement gives all resources to one reach dominant agent
whenever such an agent exists.

Proof. See Appendix A.

Proposition 11 provides conditions under which the placement problem with fixed
costs is solved by extremal placement when agents have identical distributions. More
generally, if one of the solutions to the placement problem under constant marginal
cost of transportation involves extremal placement, then with fixed costs, extremal
placement is uniquely optimal. In all of these cases in which the first-best requires
extremal placement, we of course obtain the result that in the ownership problem,
the first-best is impossible.

6 Conclusions

We analyze the optimal placement of a resource on a network that occurs before
demands are realized, anticipating costly reallocation. We show that in the case of
identical distributions, both the social surplus and profit maximizing placements are
governed by reach dominance. With identical distributions, reach dominance also
governs the optimal ownership chosen by a designer whose reallocation mechanism is
constrained efficient, provided that the resource is indivisible or the marginal cost of
transportation is sufficiently large. Stochastic reach dominance is the generalization
beyond the case of identical distributions and equal distances.

There are numerous avenues for potentially fruitful future research. Here we
discuss three. First, because we restrict attention to the case in which each agent
has constant marginal value for the entire resource, a natural generalization would be
to allow binding maximum demands, implying that marginal values decrease to zero
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beyond some number of units. The analysis of such “multi-unit” cases is simple in
the case with identical distributions when there are at least as many reach dominant
nodes as there are units and these nodes are isolated (insofar as they do not share any
common neighbors that would ever be served under ex post efficiency if the resources
were placed at these reach dominant nodes). In situations like these, all resources
are placed with some of these nodes. The nontrivial generalization thus concerns
problems in which there are not sufficiently many of these nodes. Second, rather than
using the constrained-efficient reallocation that we study, one could develop detail-
free trade-sacrifice mechanisms for the second stage that never run a deficit, endow
the agents with dominant strategies, respect their individual rationality constraints
ex post, and reallocate, loosely speaking, close to ex post efficiently. Given their
conceptual simplicity, such mechanisms may be of considerable practical relevance.
Finally, for the planner’s problem, the assumption of independently distributed values
could be dropped, with the form of correlation across the network being given by the
application of interest.
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A Proofs

Proof of Proposition 1. Letting veji = Ev[V e
ji(v)], we have ter =

∑n
i=1

∑n
j=1Cjiv

e
jirj

and sser = Ev

[∑n
i=1

∑n
j=1 viV

e
ji(v)rj

]
− ter. Using rn = 1−

∑n−1
`=1 r`, we have

sser = Ev

[ n∑
i=1

n−1∑
j=1

viV
e
ji(v)rj +

n∑
i=1

viV
e
ni(v)

(
1−

n−1∑
`=1

r`

)]
−

n∑
i=1

n−1∑
j=1

Cjiv
e
jirj −

n∑
i=1

Cniv
e
ni

(
1−

n−1∑
`=1

r`

)
,

so for j ∈ {1, . . . , n− 1}, we have

∂sser
∂rj

= Ev

[ n∑
i=1

vi
(
V e
ji(v)− V e

ni(v)
) ]
−

n∑
i=1

(
Cjiv

e
ji − Cniveni

)
,

which is independent of rj (and any other ri). This implies that an extremal ownership
vector is always optimal, independently of network structure and distributions. �

Proof of Proposition 2. For any h ∈ N , we use nh to denote the unnormalized reach
vector for agent h ∈ N . That is, for all ` ∈ {1, . . . , n− 1}, nh(`) ≡ nh(`)(n− 1). We
let ei be the vector of length n with coordinate i equal to 1 and all other coordinates
equal to 0. Let `max ≡ min{d1/ce, n − 1}. The expected social surplus under the ex
post efficient allocation rule associated with placing all resources with agent i is

sseei = Ev

[ n∑
`=1

(v` − Ci`)V e
i`(v)

]
= Ev

[ n∑
`=1

(v` − cdi`) · 1v`−cdi`≥maxh vh−cdih

]
= Ev

[
max{v` − cdi`}`∈{1,...,n}

]
= Ev

[
max{v` − cdi`}`∈{1,...,n|di`≤`max}

]
= Eṽi [max ṽi] ,

where the fourth inequality uses vi − cdii = vi ≥ 0 and v` ≤ 1, which implies that
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v` − cdi` cannot be maximal if di` > `max, and where

ṽi ≡
{
{ṽm` − c`}

ni(`)
m=1

}`=`max

`=0

= (ṽ10, ṽ11 − c, . . . , ṽ
ni(1)
1 − c︸ ︷︷ ︸

ni(1) agents at distance 1 from i

, . . . , ṽ1`max − c`max, . . . , ṽ
ni(`

max)
`max − c`max︸ ︷︷ ︸

ni(`max) agents at distance `max from i

),

with each ṽm` independently drawn from F .
Thus, the expected social surplus associated with placing all resources with agent

i depends only on the first `max coordinates of the vector ni, and it decreases if any
of the first `max coordinates of the vector ni is decremented, and it also decreases if
the `-th coordinate of ni is decreased by x ∈ {1, . . . , ni(`)} while the `′-th coordinate
is increased by x, with ` < `′ ≤ `max.

With these preliminary results in hand, suppose that agent i reach dominates
agent j given c. We need to show that it is never optimal to place the resources with
agent j. We know from Proposition 1 that extremal placement is optimal, so it is
sufficient to show that placing all resources with agent i results in greater expected
social surplus than placing all resources with agent j. Given our preliminary result, it
is sufficient to show that the first `max coordinates of nj can be obtained from the first
`max coordinates of ni through a finite number of steps, where at each step we either
decrement one of the coordinates or decrease coordinate ` while increasing coordinate
`′ by the same amount, with ` < `′ ≤ `max. We now provide such an algorithm.

Recall that because agent i reach dominates agent j, either
∑`max

`=1 ni(`) =
∑`max

`=1 nj(`)

or
∑`max

`=1 ni(`) >
∑`max

`=1 nj(`).

0. Let ñ0 ≡ ni and let k = 1 be the iteration index.

1. If
∑`max

`=1 ñk−1(`) =
∑`max

`=1 nj(`) skip to step 2. Otherwise, let h be the largest
index in {1, . . . , `max} such that ñk−1(h) > 0 and decrement ñk−1(h) by 1, i.e.,
let ñk(h) ≡ ñk−1(h) − 1, and for ` 6= h, let ñk(`) ≡ ñk−1(`). Increment k by 1
and return to step 1.

2. If ñk−1(`) = nj(`) for all ` ∈ {1, . . . , `max}, then we are done, otherwise continue
to step 3.

3. In this case, we have
∑`max

`=1 ñk−1(`) =
∑`max

`=1 nj(`).
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(a) let h be the largest index in {1, . . . , `max} such that ñk−1(h) > nj(h) and
let h′ be the smallest index in {h+1, . . . , `max} such that ñk−1(h′) < nj(h

′);

(b) define

ñk(h) ≡

{
nj(h) if ñk−1(h)− nj(h) < nj(h

′)− ñk−1(h′),
ñk−1(h) + ñk−1(h

′)− nj(h′) otherwise,

which implies that ñk(h) < ñk−1(h), and define

ñk(h
′) ≡

{
ñk−1(h

′) + ñk−1(h)− nj(h) if ñk−1(h)− nj(h) < nj(h
′)− ñk−1(h′),

nj(h
′) otherwise,

which implies that ñk(h′) > ñk−1(h
′);

(c) for ` /∈ {h, h′}, define ñk(`) ≡ ñk−1(`);

(d) increment k by 1 and return to step 2.

Because this algorithm ends in a finite number k of steps with ñk(`) = nj(`) for
all ` ∈ {1, . . . , `max}, and because at each step expected social surplus decreases, we
have completed the proof that resources are never placed with agents that are reach
dominated, which is the first part of the proposition.

If the set T (c) of reach dominant agents is non-empty, then any agent not in T (c)

is reach dominated, implying that resources are only placed with agents in T (c),
which completes the proof of the second part of the proposition. �

Proof of Proposition 4. Suppose c ≥ 1/2, in which case agents only ever trade with
their immediate neighbors. Let Ni ⊂ N be the set of agent i’s immediate neighbors.
Consider the mechanism in which agent i can buy from agent j ∈ Ni at (per-unit)
price max{vj + c,maxh∈Nj vh} and agent i can sell to agent j ∈ Ni at (per-unit)
price vj − c. This mechanism induces agent i to demand rj units from agent j if
vi > max{vj + c,maxh∈Nj vh}, and zero units otherwise, and it induces agent i to
offer ri units to agent j if vi < vj − c and vj = maxh∈Ni vh, and zero units otherwise.
Thus, this mechanism induces the ex post efficient trade with trading buyers paying
the lowest Walrasian price and trading sellers receiving the highest Walrasian price.
Agents with type 1/2 do not trade and have zero payments. These types are worst-
off, implying that worst-off types satisfy ex post and interim individual rationality
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constraints with equality. Turning to the budget surplus of this mechanism, if vi >
max{vj + c,maxh∈Nj vh}, then agent i purchases rj units from agent j and makes a
payment of rj max{vj + c,maxh∈Nj vh}, while agent j is paid rj(vi − c). Thus, the
budget surplus associated with trades involving agent i is

∑
`∈Ni s.t. vi>max{v`+c,maxh∈N` vh}

(
r` max{v` + c,max

h∈N`
vh} − r` (vi − c)

)

=
∑

`∈Ni s.t. vi>max{v`+c,maxh∈N` vh}

r`

(
max{v` − vi + 2c,max

h∈N`
vh − vi + c}

)
,

where v` − vi + 2c = (v` + c) − vi + c < vi − vi + c = c and maxh∈N` vh − vi + c <

vi − vi + c = c, which says that the transportation costs are not covered (on a trade-
by-trade basis). This then proves the impossibility of ex post efficient trade. �

Proof of Lemma 3. The individual rationality condition can be stated as for all
v ∈ [v, v], ui(v) ≥ 0. By incentive compatibility, ui(v) = maxv̂ qi(v̂)v −mi(v̂) − riv,
which implies that ui is differentiable almost everywhere and by the envelope theorem,
whenever it is differentiable, we have u′i(v) = qi(v)− ri. Thus, for all ω ∈ [v, v],

ui(v) =

∫ v

ω

(qi(x)− r)dx+ ui(ω).

From this, it follows that mi(v) = qi(v)v − riv −
∫ v
ω

(qi(x)− r)dx− ui(ω), implying

Evi [mi(vi)] =

∫ v

v

(qi(x)− ri)xdFi(x)−
∫ v

v

∫ y

ω

(qi(x)− r)fi(y)dxdy − ui(ω)

=

∫ v

v

(qi(x)− ri) Ψi(x;ω)dFi(x)− ui(ω) =

∫ v

v

qi(x)Ψi(x;ω)dFi(x)− riω − ui(ω)

= Evi [qi(vi)Ψi(vi;ω)]− riω − ui(ω) = Ev[Qi(v)Ψi(vi;ω)]− riω − ui(ω),

where the last equality uses the definition of qi(vi). By definition mi(vi), we have
Evi [mi(vi)] = Ev[Mi(v)]. This completes the proof. �

Proof of Lemma 4. For v ≥ 1 − c, we have qi(v) ≥ ri because i can never trade
as a seller. For v ≤ c, we have qi(v) ≤ ri because i can never trade as a buyer.
This implies that for c > 1/2, in which case we have 1 − c ≤ c, the agent’s interim
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expected allocation satisfies qi(v) = ri for all v ∈ [1 − c, c]. Hence, for c ≥ 1/2, all
types v ∈ [1− c, c] will be worst-off. �

Proof of Lemma 5. Assume that Fi = F for all i ∈ N , and so drop the agent
subscripts on the virtual type functions. Define the function ẑ(ω, a) to be the implicit
solution for the ironing parameter z that solves (7) (this is the same for all i given
the assumption that Fi = F for all i ∈ N ). When c ≥ 1/2, ex post efficient trade
is not possible by Proposition 4, so we have ρ∗ > 1. Thus, ẑ(1/2, 1/ρ∗) ∈ (0, 1), and
we can let ĉ ∈ [1/2, 1) be such that for all c ≥ ĉ, we have 1 − c < ẑ(1/2, 1/ρ∗) < c.

Focusing on the expression in (9) in square brackets, if 1− c < z(1/ρ∗, ω∗) ≡ z∗ < c,

then in order to have V e
ij = 1 for i 6= j, we require that Ψ 1

ρ∗
(vi;ω

∗
i ) < z∗, which

implies that Ψ 1
ρ∗

(vi;ω
∗
i ) = Ψ 1

ρ∗
(vi;ω

∗
i ), and Ψ 1

ρ∗
(vj;ω

∗
j) > z∗, which implies that

Ψ 1
ρ∗

(vj;ω
∗
j) = Ψ 1

ρ∗
(vj;ω

∗
j). So the term in square brackets can be written as

n∑
i=1

∑
j∈N\{i}

(
Ψ 1

ρ∗
(vi;ω

∗
i )− Cji

)
V ce
ji (v;ρ∗,ω∗)rj +

n∑
i=1

Ψ 1
ρ∗

(vi;ω
∗
i )V

ce
ii (v;ρ∗,ω∗)ri.

But notice that, dropping the arguments on the V ce
ij terms,

Ev

[(
Ψ 1

ρ∗
(vi;ω

∗
i )−Ψ 1

ρ∗
(vi;ω

∗
i )
)
V ce
ii

]
= Ev

[(
z∗ −Ψ 1

ρ∗
(vi;ω

∗
i )
)
V ce
ii | Ψ 1

ρ∗
(vi;ω

∗
i ) = z∗

]
Pr
(

Ψ 1
ρ∗

(vi;ω
∗
i ) = z∗

)
= Ev

[
z∗ −Ψ 1

ρ∗
(vi;ω

∗
i ) | Ψ 1

ρ∗
(vi;ω

∗
i ) = z∗, V ce

ii = 1
]

Pr
(

Ψ 1
ρ∗

(vi;ω
∗
i ) = z∗, V ce

ii = 1
)

= Ev

[
z∗ −Ψ 1

ρ∗
(vi;ω

∗
i ) | Ψ 1

ρ∗
(vi;ω

∗
i ) = z∗

]
Pr
(

Ψ 1
ρ∗

(vi;ω
∗
i ) = z∗

)
= 0,

where the first equality uses the fact that the ironed and unironed virtual types are
identical outside of the ironing range, the second equality uses the binary nature of
V ce
ij , the third equality uses the result that if vi is in the ironing range and c > ĉ,

then it is not possible for agent i to trade and so V ce
ii = 1, and the final equality uses

the definition of the ironing parameter given in (7). Thus, the expectation of the
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expression in (9) in square brackets is

Ev

[ n∑
j=1

n∑
i=1

(
Ψ 1

ρ∗
(vi;ω

∗
i )− Cji

)
V ce
ji (v;ρ∗,ω∗)rj

]
,

which completes the proof. �

Proof of Proposition 10. Because Fi = F for all i ∈ N , we can drop the agent
subscripts on the virtual type functions. Moreover, because the resource is indivisible,
we have rj = 1 for some j ∈ N and ri = 0 for all i 6= j. As noted in the text, this
implies that the constrained-efficient reallocation mechanism is a generalization of the
second-best mechanism of Myerson and Satterthwaite (1983) to a setting with costly
transportation with n−1 buyers whose worst-off types are 0 and agent j as the seller
whose worst-off type is 1.

Suppose that agent i reach dominates agent j. We show that the expected
constrained-efficient social surplus from giving ownership to agent i is greater than
from giving it to agent j. Note that if agent j has ownership of all resources, i.e.,
r = ej, where ej is the unit vector of length n with j-th coordinate equal to 1, and
Q is an incentive compatible reallocation rule, then the expected budget surplus net
of transportation costs under binding individual rationality is

Ev

[
ΨS(vj)Qj(v) +

∑
` 6=i

(
ΨB(v`)− cdj`

)
Q`(v)

]
− 1

because, in this case, agent j can trade only as a seller and all other agents can trade
only as buyers, implying that the worst-off type of agent j is 1 and the worst-off
types of each other agent is 0 (the final “−1” reflects the outside option of agent j’s
worst-off type).

Let kj ≡ 1 +
∑min{d1/ce,n−1}

`=1 nj(`)(n− 1) be the number of agents within distance
min{d1/ce, n − 1} of agent j (including agent j itself), and order those agents from
1 to kj starting with agent j and then next the agents at distance 1 from agent j
(ordered arbitrarily), then the agents at distance 2 from agent j (ordered arbitrarily),
and so on, up to the agents at distance min{d1/ce, n − 1} from agent j (ordered
arbitrarily). For h ∈ {1, . . . , kj}, let Ij(h) be the identity of the h-th agent in this
ordering. Analogously, let ki ≡ 1 +

∑min{d1/ce,n−1}
`=1 ni(`)(n − 1) be the number of
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agents within distance min{d1/ce, n − 1} of agent i, and order those agents from 1

to ki starting with agent i and then the agents at distance 1 from agent i (ordered
arbitrarily), and so on, up to the agents at distance min{d1/ce, n − 1} from agent i
(ordered arbitrarily). For h ∈ {1, . . . , ki}, let Ii(h) be the identity of the h-th agent
in this ordering. Note that Ij(1) = j and Ii(1) = i. Because agent i reach dominates
agent j, ki ≥ kj and for h ∈ {1, . . . , kj}, diIi(h) ≤ djIj(h), with a strict inequality for
at least one h.

We let x ∈ [0, 1]kj denote the vector of types of the agents within distance
min{d1/ce, n − 1} of agent j, in the same order as the ordering just defined, all
of which are independent draws from F . Analogously, we let y ∈ [0, 1]ki denote the
vector of types of the agents within distance min{d1/ce, n−1} of agent i, in the same
order as the ordering just defined, again all independent draws from F . Further,
we let y denote the first kj coordinates of y. We refer to x (y) as the j-centered
(i-centered) types.

Given ownership ej, we can write the constrained-efficient reallocation rule as a
function of the types of agents within distance min{d1/ce, n−1} from agent j because
the constrained-efficient rule never reallocates to agents at a distance greater than
min{d1/ce, n − 1} from agent j. We denote by Q̂Ij(h),ej(x) the constrained-efficient
allocation for agent Ij(h) when the j-centered types are x. Ignoring ties and letting
ρej be the Lagrange multiplier on the no-deficit constraint when the ownership is ej,
we have for x ∈ [0, 1]kj ,

Q̂Ij(1),ej(x) ≡

 1 if ΨS
1/ρej

(x1) ≥ max
h∈{2,...,kj}

ΨB
1/ρej

(xh)− cdjIj(h),

0 otherwise,

and for h ∈ {2, . . . , kj},

Q̂Ij(h),ej(x) ≡

 1 if ΨB
1/ρej

(xh)− cdjIj(h) ≥ max
h′∈{2,...,kj}

{ΨS
1/ρej

(x1),Ψ
B
1/ρej

(xh′)− cdjIj(h′)},

0 otherwise.

The expected budget surplus net of transportation costs under binding individual
rationality is

πej ≡ Ex

[
ΨS(x1)Q̂Ij(1),ej(x) +

kj∑
h=2

(
ΨB(xh)− cdjIj(h)

)
Q̂Ij(h),ej(x)

]
− 1.
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By the assumption of identical distributions, we can “apply” Q̂ej to the i-centered
types y by defining for each h ∈ {1, . . . , kj}, Q̃Ii(h),ej(y) ≡ Q̂Ij(h),ej(y). This gives us

πej = Ey

[
ΨS(x1)Q̃Ij(1),ej(y) +

kj∑
h=2

(
ΨB(xh)− cdjIj(h)

)
Q̃Ij(h),ej(y)

]
− 1

< Ey

[
ΨS(y1)Q̃Ii(1),ej(y) +

kj∑
h=2

(
ΨB(yh)− cdiIi(h)

)
Q̃Ii(h),ej(y)

]
− 1,

where the inequality uses the implication of reach dominance that diIi(h) ≤ djIj(h)

with a strict inequality for at least one h. This implies that when reallocation rule
Q̃ej is applied under ownership ei, the expected budget surplus net of transportation
costs under binding individual rationality is greater than πej .

By an analogous argument, with ΨS and ΨB replaced by the identity function,
expected social surplus under Q̂ej is

Ex

[
x1Q̂Ij(1),ej(x) +

kj∑
h=2

(
xh − cdjIj(h)

)
Q̂Ij(h),ej(x)

]
< Ey

[
y1Q̃Ii(1),ej(y) +

kj∑
h=2

(
yh − cdiIi(h)

)
Q̃Ii(h),ej(y)

]
,

which says that when the reallocation rule Q̃ej is applied under ownership ei, the
expected social surplus is greater than in the constrained-efficient outcome under
ownership ej. Thus, we have shown that under ownership ei, one can achieve greater
expected social surplus than in the constrained-efficient outcome under ownership ej,

while continuing to satisfying all of the constraints. Further, optimizing the realloca-
tion rule for ownership ei and applying it to y (rather than only y), expected social
surplus further weakly increases, completing the proof that with indivisible resources,
ownership by reach dominated agents is not optimal under constrained efficiency. �

Proof of Proposition 11. First consider the case with c ∈ [1/2, 1). If rj ≤ c for all
j, then there is no trade and social surplus is simply E[v]. If ri > c for some agent
i, then social surplus is E[v] + riGFTi(ri), where GFTi(ri) is the expected gain in
social surplus associated with trades involving agent i, necessarily as a seller, given
ri. Because GFTi(ri) is positive and increasing in ri (because c/ri is less than one
and decreases with ri), social surplus is maximized for ri ∈ (c, 1] at ri = 1. It then
remains to choose the agent i to maximize GFTi(1).

Now consider the case with c ∈ [0, 1/2). Suppose that agent i reach dominates

42



agent j given cost c, and consider the gains from trade associated with trades involving
agents i and j. To allow for the possibility that there are gains from trade, we assume
that the sum of ownership shares of agents i and j satisfies ri + rj > c, which makes
sure that for sufficiently extremal ownership (e.g. by giving all of ri + rj to agent i),
there are positive gains from trade. Then we have

riGFTi(ri) + rjGFTj(rj) ≤ riGFTi(ri) + rjGFTi(rj)

< riGFTi(ri + rj) + rjGFTi(ri + rj)

= (ri + rj)GFTi(ri + rj),

where the first inequality uses that agent i reach dominates agent j, and the second
inequality is strict because GFTi(·) is strictly increasing in its argument when it is
positive. Thus, social surplus is increased by shifting ownership towards the reach
dominating agent. It then follows that if the set of reach dominant agents is non-
empty, then the optimal ownership places resources only with reach dominant agents.
Further, if there are two reach dominant agents, then it is optimal to place all resources
with a single one of them because of the increasing returns to scale in the gains from
trade. �
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1 Details for ordering of rn(0)

This appendix provides details for the ordering of rn(0), as illustrated in Figure 2.
Assume that Fi = F for all i ∈ N and drop agent-specific subscripts on the virtual

type functions, writing ΨS, ΨB, and Ψ instead. For arbitrary n and c = 0, we have
qei (v) = Hn(v), where Hn(v) ≡ F n−1(v), so ωei = H−1n (ri). Using (6), r(0) is defined
by the r that solves

Ev

[
n∑
i=1

Ψ(vi;ω
e
i )q

e
i (vi)

]
=

n∑
i=1

ωeiri,

which we can write as

0 = Ev

[
n∑
i=1

Ψ(vi;H
−1
n (ri))Hn(vi)

]
−

n∑
i=1

H−1n (ri)ri

=
n∑
i=1

(∫ H−1
n (ri)

0

ΨS(x)Hn(x)f(x)dx+

∫ 1

H−1
n (ri)

ΨB(x)Hn(x)f(x)dx−H−1n (ri)ri

)

=
n∑
i=1

(∫ H−1
n (ri)

0

(
x+

F (x)

f(x)

)
Hn(x)f(x)dx+

∫ 1

H−1
n (ri)

(
x− 1− F (x)

f(x)

)
Hn(x)f(x)dx−H−1n (ri)ri

)

=
n∑
i=1

(∫ 1

0

xHn(x)f(x)dx+

∫ 1

0

Hn(x)F (x)dx−
∫ 1

H−1
n (ri)

Hn(x)dx−H−1n (ri)ri

)
= 1 + (n− 1)

∫ 1

0

F n(x)dx−
n∑
i=1

(∫ 1

H−1
n (ri)

Hn(x)dx+H−1n (ri)ri

)
= 1 + (n− 1)

∫ 1

0

F n(x)dx−
n∑
i=1

(
1−

∫ 1

H−1
n (ri)

xdHn(x)

)

= (n− 1)

(∫ 1

0

F n(x)dx− 1 +
1

n− 1

n∑
i=1

∫ 1

H−1
n (ri)

xdHn(x)

)
.

Thus, for a star network with ownership vector (r, 1−r
n−1 , . . . ,

1−r
n−1) and c = 0, we have

∫ 1

0

F n(x)dx = 1− 1

n− 1

∫ 1

(Fn−1)−1(r)

xdF n−1(x)−
∫ 1

(Fn−1)−1( 1−r
n−1

)

xdF n−1(x),

which for the uniform distribution can be written as

n

n+ 1
= r

n
n−1 + (n− 1)

−1
n−1 (1− r)

n
n−1 .

1



Note that the left side is constant in r and the right side is convex in r and increasing
in r at r = 1. Further, the right side is equal to 1 at r = 1, and so greater than the
left side, and the right side is less than the left side at r = 0 for n > 2. So for all
n > 2, there is a unique solution. Solving this (and taking the maximum solution for
n = 2), we have:

n rn(0) n1−r1
n−1

2 0.788675 0.433650
3 0.765431 0.351853
4 0.764689 0.313749
5 0.768943 0.288821
6 0.774292 0.270849
7 0.779633 0.257095
8 0.784635 0.246131
9 0.789221 0.237126
10 0.793397 0.229559

While rn(0) is not monotone in n, that comparison does not properly account
for the expansion in the number of agents. Here we show that the cumulative dis-
tributions Gn(i) ≡

∑i
`=1 r` defined for i ∈ {0, 1, . . . , n} satisfy FOSD in n with Gn

first-order stochastically dominating Gn′ if n < n′. More precisely, define the contin-
uous functions

Gn(x) ≡

{
nr1x if x ≤ 1/n,

1− 1−r1
1−1/n + 1−r1

1−1/nx if x > 1/n.

The slope at x = 1, 1−r1
1−1/n , is decreasing in n, which is sufficient to prove FOSD.
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