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1 Introduction

The emergence of online technology giants has fueled public policy debates concerning the

appropriate regulation of large monopoly firms. Digital storefronts have enabled online

platforms to operate at a scale that is orders of magnitude larger than traditional brick-and-

mortar firms.1 Analyzing the social costs and benefits of these large platforms requires an

understanding of the economic forces that govern their size and market power.

In this paper we introduce a simple independent private values model that provides a

microfoundation for the social costs and benefits of monopoly market makers, where we dis-

tinguish between both the thickness of markets and the nature of products. Thin markets

are modelled in terms of a bilateral trade problem, while thick markets involve a continuum

of buyers and sellers whose values and costs have the same distributions as those from the

bilateral trade problem. The extent to which a product is niche is captured by truncating

the distributions from which buyers and sellers draw their types. As products become in-

creasingly niche both the probability that agents can feasibly trade in the bilateral trade

problem and the quantity traded in a thick Walrasian market decrease. This model allows

us to parameterize the increasing returns to scale in market making by the extent of the

double coincidence of wants problem in the bilateral trade setting. Naturally, the double

coincidence of wants problem is alleviated in the thick market setting. We show that for

sufficiently niche products, a profit-maximizing monopoly operating a thick market gener-

ates more consumer surplus per buyer and producer surplus per seller than ex post efficient

bilateral trade. We also consider the ratios of per buyer consumer surplus and per seller

producer surplus to first-best social surplus in the bilateral trade problem. We show that

these ratios diverge to positive infinity as products become perfectly niche.

We also establish two related invariance results. We show that the severity of the incentive

problem in bilateral trade, which is captured by the ratio of second-best social surplus divided

by first-best social surplus, is independent of the nature of the product. Likewise, we show

that, relative to an efficient thick market, the harm from a thick market monopoly does not

vary with how niche or mass a product is. The latter implies that the rationale for or against

government intervention in a thick monopoly market does not depend on the nature of the

product per se. Moreover, it shows that when products are sufficiently niche the benefits

of thick market monopolies relative to thin markets for consumer and producer surplus are

first order, while their harm relative to efficient thick markets is second order.

That said, there is a sense in which thick market monopolies may be more harmful for

1For example, in the early 2000s the number of book titles available on Amazon was twenty times that
of a typical, traditional book store (see Brynjolfsson et al., 2003; Waldfogel, 2017).
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niche products than for mass products, relative to efficient thick markets. Assuming that

competing bilateral exchanges offer agents an outside option to trading with the thick market

monopoly, we show in an extension that these competing exchanges are more effective at

curbing the market power of a thick market monopoly the less niche a product is. The

intuition is simply that the double coincidence of wants problem becomes more severe of an

obstacle as products becomes more niche. Therefore, the bilateral exchange becomes a less

effective competitor the more niche a product is.

Oliver Williamson made the important observation that larger firms outperform smaller

ones because they can always replicate what the smaller ones do, and sometimes do better

by intervening selectively (Williamson, 1985). The same logic applies to markets because

thicker markets can always execute the same trades as smaller, standalone markets and can

sometimes execute additional or more valuable trades. This gives rise to increasing returns

to scale even when the market maker’s technology exhibits constant marginal costs per trade.

Despite its relevance, the ability of thick markets to overcome the double coincidence

of wants problem has received relatively scant attention in the mechanism design and the

related double-auctions literature.2 The latter focuses on incentives and has established that

the incentive cost of thin markets vanishes quickly as market size increases; see, for example,

Gresik and Satterthwaite (1989), Satterthwaite and Williams (1989), McAfee (1992), Rus-

tichini et al. (1994), Satterthwaite and Williams (2002), Tatur (2005), Cripps and Swinkels

(2006), Kojima and Yamashita (2017) and Loertscher and Mezzetti (2021). This shows that,

as far as incentives are concerned, the benefits from increasing market thickness are small

to none. Without necessarily being framed in this way, this literature provides one possible

justification for the aggressive approach taken by antitrust authorities of numerous coun-

tries to technology giants such as Amazon, Apple, Google, Microsoft and Facebook, whose

size and behaviour are perceived as anticompetitive and as an abuse of market power. Our

paper contributes to these ongoing debates by distilling what may be an issue of first-order

importance: the benefits of market thickness and the increasing returns to scale in market

making that arise for niche products. According to Waldfogel (2017), digitalization has led

to a “golden age of music, movies, books and television.” Anderson (2006) provides an early

account of the benefits that accrue to consumers (and producers) from the access to the “long

tail” that digitalization grants. He notes that “Netflix changed the economics of niches, and

in so doing, reshaped our understanding about what people actually want to watch” and

reports that for books, “Barnes & Noble found that the bottom 1.2 million titles represent

2One notable exception is Bulow and Klemperer (1996) who demonstrate the importance of increasing
the number of buyers in one-sided settings by showing that a second-price auction with no reserve price but
one additional bidder outperforms the optimal auction.
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just 1.7 percent of its instore sales, but a full 10 percent of its online (bn.com) sales.”3

Some of the key issues this paper brings to light are also present in Loertscher et al. (2022),

but are somewhat camouflaged there by the dynamic setting. By studying a one-shot setup,

the present paper provides a clean-cut and transparent analysis of the benefits of thicker

markets, and the relative importance of incentives and improved matching in thicker markets.

Moreover, in the setting considered in Loertscher et al. (2022), provided a non-trivial dynamic

market-clearing mechanism is optimal (i.e. provided it is not optimal for the designer to

simply execute a static bilateral trade in each period), there is no incentive problem and all

of the benefits from increasing market thickness stem from improved matching of traders.

Part of the purpose of this paper is to show that large matching benefits from increasing

market thickness can also arise in static markets. To the best of our knowledge, our paper

is the first to use the truncation-invariance of virtual type functions to model the benefits of

market thickness.

Of course, market thickness and thinness also play an important role in the literature on

financial markets, where they are typically related to an agent’s price impact in a continuous-

time double auction (see e.g. Rostek and Weretka, 2008). In contrast, the definitions used

here (and in Loertscher et al., 2022) are independent of the trading mechanism, implying

that a market can be thin even if a dominant-strategy mechanism—such as the one from

Hagerty and Rogerson (1987)—is used.

Our extension in which bilateral trade offers an outside option to trading with a monopoly

draws inspiration from the literature on intermediaries facing a competing exchange; see

Gehrig (1993), Spulber (2002), Rust and Hall (2003), and Loertscher and Niedermayer

(2020). An important departure of our model from the approach in this literature is that we

assume that the competing exchanges involve bilateral trade, which implies that the value

of the outside option for agents depends on whether products are niche or mass. In contrast,

in the aforementioned papers, the competing exchanges are thick markets.

The remainder of this paper is organized as follows. Section 2 introduces the setup.

In Section 3 we derive our results concerning thick Walrasian markets and thick market

monopolies and relate them to properties of the bilateral trade problem. Section 4 discusses

returns to scale in market making for niche products, as well as the implications of competing

bilateral exchanges for market power in markets for niche products. Section 5 concludes the

paper. All proofs are provided in Appendix A and additional extensions and robustness

checks can be found in Appendix B.

3Brynjolfsson et al. (2003) estimate that Amazon’s book sales for titles ranked outside the top 100,000
accounted for 39.2% of total book sales of Amazon.
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2 Setup

Throughout this paper we consider static market settings involving risk-neutral buyers and

sellers with unit demand and unit capacity, respectively, whose utility functions are quasi-

linear. We assume that each buyer is privately informed about the realization of its value

v and each seller is privately informed about its realized cost c. Under these assumptions,

optimal mechanisms are well-defined without restrictions on the contracting space. With the

exception of the analysis in Section 4.2, the value of the outside option of not participating

in the market is 0 for every agent.

We first introduce the notion of a mass product. In markets for a mass product buyers

and sellers draw their types from distributions with a common support. Specifically, buyer

values v ∈ [0, 1] are distributed according to the distribution F with density f that has full

support on [0, 1]. Similarly, seller costs c ∈ [0, 1] are distributed according to the distribution

G with density g that has full support on [0, 1]. For any α ∈ [0, 1], the weighted virtual type

functions are then

Φα(v) := v − α1− F (v)

f(v)
and Γα(c) := c+ α

G(c)

g(c)
.

We also let Φ(v) := Φ1(v) and Γ(c) := Γ1(c) denote the virtual type functions that have

weight of α = 1 on revenue. To develop an intuitive understanding of these functions, con-

sider first Φ and Γ. As observed by Mussa and Rosen (1978) and Bulow and Roberts (1989),

these functions can be interpreted as marginal revenue and marginal (procurement) cost

functions. To see this, notice first that F−1(1− q) and G−1(q) can be viewed as the inverse

demand and supply functions given quantity q ∈ [0, 1], implying that revenue and procure-

ment cost as a functions of q are HF (q) := qF−1(1−q) and HG(q) := qG−1(q). Consequently,

marginal revenue and marginal cost are H ′F (q)|p=F−1(1−q) = Φ(p) and H ′G(q)|p=G−1(q) = Γ(p).

Notice next that Φα(v) = (1−α)v+αΦ(v) and Γα(c) = (1−α)c+αΓ(c). That is, the weighted

virtual type functions are convex combinations of the true types v and c and the virtual types

Φ(v) and Γ(c), with weight α on the virtual types. Consequently, the weighted virtual type

functions Φα(v) and Γα(c) are the analogues to the marginal revenue and marginal cost

functions derived from a Ramsey pricing problem in which the regulator’s weight on revenue

is α.4 For any α ∈ [0, 1], we let Φα(v) and Γα(c) respectively denote the weighted ironed vir-

tual valuation and cost functions.5 As we just saw, Φ and Γ represent marginal revenue and

4For more on Ramsey pricing, see, for example, Wilson (1993). Bulow and Roberts (1989) make the
connection between the weighted virtual type functions used in mechanism design and Ramsey pricing while
Myerson and Satterthwaite (1983) show that α = λ/(1 +λ) in the bilateral trade problem they study, where
λ > 0 is the solution value of the Lagrange multiplier associated with the no-deficit constraint.

5The ironed virtual type functions are the marginal revenue and marginal cost functions associated
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marginal cost under market-clearing pricing. However, in cases where one of these functions

is not monotone (and market-clearing pricing is not necessarily optimal for both sides of the

market) the ironed functions Φ and Γ represent marginal revenue and marginal cost under

the optimal mechanism.

1

fν gν

ν ν

Figure 1: An illustration of the density functions fν and gν for a niche market.

In the market for a niche product with parameter ν ∈ [0, 1) we assume that buyer values

v ∈ [aν , 1] with aν < 0 are drawn from some distribution Fν with density fν that has full

support on [aν , 1] and seller costs c ∈ [0, bν ] with bν > 1 are drawn from some distribution Gν

with density gν that has full support on [0, bν ]. While these distributions may be arbitrary

outside the interval [0, 1] of overlapping support, on this interval these distributions are

restricted so that for all ν ∈ [0, 1), v ∈ [0, 1] and c ∈ [0, 1], we have

Fν(0) = 1−Gν(1) = ν,
Fν(v)− ν

1− ν
= F (v) and

Gν(c)

1− ν
= G(c).

That is, in a market for a niche product with parameter ν ∈ [0, 1), buyers have a value

v ∈ [aν , 0) with probability ν ∈ [0, 1) and a value v ∈ [0, 1] with probability 1−ν. Conditional

on v ∈ [0, 1], buyers values are distributed according to F . Similarly, sellers have a cost

c ∈ (1, bν ] with probability ν and a cost c ∈ [0, 1] with probability 1 − ν. Conditional on

c ∈ [0, 1], sellers costs are distributed according to G. See Figure 1 for an illustration. The

following observation will play an important role in our analysis. We state it as a lemma

since it seems a useful fact without claiming or believing that we are the first to make this

with the concavification of the revenue function and the convexification of the procurement cost function,
respectively; see, for example, Myerson (1981). Specifically, we let HF denote the concavification of HF

and HG denote the convexification of HG. The ironed virtual type functions are then given by Φ(v) =

H
′
F (q)|q=1−F (v) and Γ(c) = H

′
G(q)|q=G(c), while the weighted ironed virtual type functions are given by

Φα(v) = (1 − α)v + αΦ(v) and Γα(c) = (1 − α)c + αΓ(c). Here, the concavification (also known as the
upper concave envelope) of a given function is the smallest concave function that is weakly larger than that
function at every point in its domain. The convexification (or lower convex envelope) of a given function is
the largest convex function that is weakly less than that function at every point in its domain.
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observation:

Lemma 1. The weighted virtual type functions are truncation invariant. That is, for any

α ∈ [0, 1], ν ∈ [0, 1], v ∈ [0, 1) and c ∈ [0, 1], we have

Φα(v) = v − α1− Fν(v)

fν(v)
and Γα(c) = c+ α

Gν(c)

gν(c)
.

We study two extreme cases that encompass both perfectly thin and perfectly thick mar-

kets. On the thin end of the spectrum we consider the bilateral trade problem of Myerson

and Satterthwaite (1983) which involves exactly one buyer and one seller. While some of our

results—such as Proposition 1—hold for any α, our benchmark for the bilateral trade prob-

lem is social surplus under the second-best mechanism, which maximizes expected gains from

trade subject to agents’ incentive compatibility and interim individual rationality constraints

and a no-deficit constraint for the designer.6 By construction, the designer’s expected profit

under the second-best mechanism is 0. In contrast to the second-best mechanism, the allo-

cation rule under the first-best mechanism is to induce trade whenever v ≥ c. On the thick

end of the spectrum we consider markets involving a continuum of traders, with an equal

mass of buyers and sellers on each side of the market. In this case we look at both the

thick Walrasian market, in which there is a benevolent (arguably fictitious) auctioneer who

organizes the exchange and quotes the market clearing price, and the thick market monopoly,

where the thick market is organized by a profit-maximizing monopoly that has zero costs.7

In either case, the mechanism consists of posting price(s) since the market maker faces no

aggregate uncertainty. Consequently, the agents act as price-takers in large markets.

The setting introduced here provides a sharp illustration of the main insights of this

paper. However, the results in Section 3 can be generalized to allow for asymmetric niche

product parameters for buyers and sellers (see Appendix B.2) and to allow for the region

of overlapping support between the type distributions to vary with ν (see Appendix B.3).

Our setup is general insofar as we impose only mild restrictions on the distributions from

which the agents draw their their types. Its tractability derives from the way the niche

nature of products is modelled, which is done with a single parameter, without imposing any

parameteric restrictions on the type distributions.

6Formally, the second-best mechanism maximizes E[(v − c)Q(v, c)] over Q : [0, 1]2 → [0, 1] subject to
the aforementioned constraints. The solution to this problem is given by the allocation rule Qα

∗
(v, c) that

induces trade if and only if Φα∗(v) ≥ Γα∗(c), where α∗ ∈ (0, 1) is the unique number such that the expected
revenue of the designer is 0. That is, such that E[(Φ(v)− Γ(c))Qα

∗
(v, c)] = 0.

7See Aumann (1964) for a formalization of competitive equilibrium and its relation to the core with a
continuum of traders. Implicitly or explicitly, the theory of monopoly and oligopoly pricing dating back to
Cournot (1838) has rested on the assumption of a continuum of price-taking agents on sides of the market
without power.
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Of course, niche products can naturally arise in many alternative settings. For exam-

ple, one can consider type distributions with unbounded support, where products become

increasingly niche as probability mass is shifted towards the tails of the type distributions in

an appropriate fashion (see Appendix B.4). One can also model niche products by parame-

terizing the type distributions so that the elasticity of demand and supply increases and the

Walrasian quantity traded decreases as products become increasingly niche (see Appendix

B.5). As shown there, the main insights carry over to these alternative specifications.

3 Analysis

For ν ∈ [0, 1), let SFB1 (ν) and SSB1 (ν) denote first-best and second-best welfare, respectively,

in the bilateral trade setting.8 Similarly, we let S∞(ν) denote welfare per trader pair in the

thick Walrasian market. In this section we analyze the thick Walrasian market and the thick

market monopoly by relating them to the bilateral trade problem. In particular, we will be

interested in studying how SFB1 (ν), SSB1 (ν) and S∞(ν) and their ratios vary with ν. The

mass product ratios

s1 :=
SSB1 (0)

SFB1 (0)
and s∞ :=

S∞(0)

SFB1 (0)

with 0 < s1 < 1 < s∞ provide a natural benchmark.9 We will also study how consumer

surplus per buyer, producer surplus per seller, and social surplus per trader pair vary with ν

and how they compare to SFB1 (ν) when the thick market is organized by a profit-maximizing

monopoly.

3.1 Thin markets

We begin by analyzing the bilateral trade problem. As noted, conditional on having both

v ∈ [0, 1] and c ∈ [0, 1], agents’ type distributions (and hence agents’ virtual type functions)

do not vary with the parameter ν. Consequently, the first-best mechanism and second-best

mechanisms do not depend on ν and we have

SFB1 (ν) = (1− ν)2SFB1 (0) and SSB1 (ν) = (1− ν)2SSB1 (0), (1)

8As shown by Myerson and Satterthwaite (1983), first-best trade is not possible when the agents are pri-
vately informed about their values and costs, their interim incentive compatibility and individual rationality
constraints have to be satisfied and the mechanism must not run a deficit. Moreover, by assumption, full
trade is not optimal in this setting.

9The impossibility theorem of Myerson and Satterthwaite (1983) implies s1 < 1. Because our assumptions
imply that full trade is not optimal in this setting, we also have s∞ > 1.
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where (1 − ν)2 is the probability that v ∈ [0, 1] and c ∈ [0, 1]. More generally, for any

α ∈ [0, 1] we can consider the mechanism that maximizes a convex combination of social

welfare and designer profit, where α is the weight on the designer’s profit. Letting Sα1 (ν)

denote welfare under this mechanism, we have the following proposition.

Proposition 1. For any α ∈ [0, 1] and ν ∈ [0, 1), we have Sα1 (ν) = (1 − ν)2Sα1 (0), where

Sα1 (0) = E[(v − c)Qα(v, c)] and Qα(v, c) = 1(Φα(v) ≥ Γα(c)). Consequently, the ratio
Sα1 (ν)

SFB1 (ν)

does not vary with ν.

The class of mechanisms considered in Proposition 1 is equivalent to the class of mech-

anisms that implement Ramsey pricing.10 This class of mechanisms traces out a frontier

characterizing the optimal tradeoff between revenue and welfare, encompassing welfare max-

imization (the first-best mechanism), welfare maximization subject to budget balance (the

second-best mechanism) and profit maximization.

In some applications, other mechanisms, such as the trade sacrifice mechanism of McAfee

(1992), may be more practical. With that in mind, we have the following extension of

Proposition 1 to the posted-price mechanism of Hagerty and Rogerson (1987), which is

what the trade sacrifice mechanism of McAfee (1992) specializes to when there is only one

buyer and one seller. Letting SHR1 (ν) denote Hagerty-Rogerson welfare in the bilateral trade

problem we have

SHR1 (ν) = (1− ν)2(1− F (p))G(p)E[v − c|v ≥ p, c ≤ p] = (1− ν)2SHR1 (0),

showing that the ratio
SHR1 (ν)

SFB1 (ν)
does not vary with ν.

3.2 Thick Walrasian markets

We now analyze thick markets involving a continuum of traders, starting with thick Walrasian

markets. Analogously to the case involving bilateral trade, the market clearing price p is

independent of ν and is such that 1−F (p) = G(p). Letting w = 1−F (p) = G(p) denote the

Walrasian quantity in a market for mass products (strictly speaking, the probability that

any given agent trades in an efficient thick market, conditional on its type being between 0

and 1), the Walrasian quantity in a market for niche products is given by w(1− ν). Welfare

10Under Ramsey pricing social welfare is maximized subject to the constraint that the mechanism generates
profit of at least k. The second-best mechanism corresponds to Ramsey pricing with k = 0. This class of
mechanisms is also equivalent to the class of mechanisms that maximize profit subject to the constraint that
some minimal level of welfare is achieved. See Wilson (1993) and Bulow and Roberts (1989).

9



per trader pair in the thick Walrasian market is then

S∞(ν) = w(1− ν)E[v − c|v ≥ p, c ≤ p] = (1− ν)S∞(0).

This setup and the role of the niche product parameter ν in thick Walrasian markets is

illustrated in Figure 2.

Q

P

p

w

P S(Q)

PD(Q)

S∞(0)

Q

P

ww(1− ν)

P S
(

Q
1−ν

)

PD
(

Q
1−ν

)

S∞(ν)

Figure 2: The thick Walrasian market for a mass product and for a niche product.

Combining all of this with our analysis from the previous section, we have the following

proposition.

Proposition 2. For any ν ∈ [0, 1) we have S∞(ν)

SFB1 (ν)
= s∞

1−ν > 1 and hence limν→1
S∞(ν)

SFB1 (ν)
=∞.

Propositions 1 and 2 provide a formalization of the importance of avoiding the double

coincidence of wants problem for niche products. As is well known from the double auc-

tions literature, the incentive cost of small markets vanishes quickly as the size of a market

increases. Since the second-best mechanism arises as a special case of Proposition 1, this

proposition shows that the ratio
SSB1 (ν)

SFB1 (ν)
, which provides an upper bound on the incentive cost

of small markets, does not depend on the niche market parameter ν. In contrast, the rela-

tive benefits of thick markets, captured by the ratio S∞(ν)

SFB1 (ν)
, increase in ν at rate (1− ν)−1.

Intuitively, thin niche markets suffer from a severe double coincidence of wants problem.

First-best welfare in the bilateral trade setting is proportional to (1− ν)2 because any given

agent with a type that lies within the interval [0, 1] is only matched with another such agent

with probability 1− ν. In the thick Walrasian market welfare per trader pair is proportional

to 1−ν and any buyer with value v ≥ p and any seller with cost c ≤ p trades with probability

1.
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3.3 Thick market monopoly

We now consider a thick market with niche product parameter ν that is operated by a

monopoly market maker. We let CSM∞ (ν), PSM∞ (ν) and SM∞ (ν) denote consumer surplus

per buyer, producer surplus per seller and total surplus per trader pair, respectively. In

this case it is useful to distinguish whether or not the functions Φ and Γ are increasing.

When these functions are increasing, customarily referred to as the regular case, this implies

that the marginal revenue and marginal cost functions facing the monopolist are decreasing

and increasing, respectively. The optimal mechanism under a thick market monopoly then

involves posting prices pB (for buyers) and pS (for sellers) on both sides of the market. These

prices equate marginal revenue and marginal cost and balance the quantity traded. That is,

they satisfy

Φ(pB) = Γ(pS) and 1− F (pB) = G(pS). (2)

To see this, notice that if the monopoly trades the quantity q ∈ [0, 1] at market clearing

prices pB = F−1(1− q) and pS = G−1(q), its profit maximization problem is

max
q∈[0,1]

(F−1(1− q)−G−1(q))q, (3)

which yields the first-order condition

Φ(F−1(1− q))− Γ(G−1(q)) = Φ(pB)− Γ(pS) = 0.

The second-order condition is satisfied if Φ(v) and Γ(c) are increasing, proving that the

first-order condition characterizes a maximum and hence that the prices in (2) are optimal

and unique. Moreover, they are independent of ν and such that 0 < pS < pB < 1. Let

m = G(pS) = 1− F (pB) denote the probability that any given buyer or seller trades under

the thick market monopoly, conditional on having a value or cost between 0 and 1. The

unconditional probability of trading is then m(1 − ν). Accordingly, in the regular case,

consumer surplus per buyer and producer surplus per seller under the thick market monopoly

are

CSM∞ (ν) = m(1− ν)E[v − pB|v ≥ pB] and PSM∞ (ν) = m(1− ν)E[pS − c|c ≤ pS].

Moreover, the monopoly’s profit per trader pair is m(1− ν)(pB− pS) and consequently total

surplus per trader pair is given by

SM∞ (ν) = CSM∞ (ν) + PSM∞ (ν) +m(1− ν)(pB − pS).
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More generally, if the type distributions are not restricted to be regular, we can apply the

analysis of Loertscher and Muir (2022) to obtain similar expressions for consumer surplus,

producer surplus and the monopoly’s profit per trader pair.

An interesting and important question is whether, relative to a thick Walrasian market, a

thick market monopoly is more harmful for consumers and producers with niche or with mass

products. As we show next, the harm from monopolies that intermediate a thick market does

not depend on the nature of the product. Letting CS∞(ν) and PS∞(ν) respectively denote

consumer surplus per buyer and producer surplus per seller in a thick Walrasian market we

have

CS∞(ν) = w(1− ν)E[v − p|v ≥ p] and PS∞(ν) = w(1− ν)E[p− c|c ≤ p].

Putting all of this together yields the following proposition.

Proposition 3. For the thick market monopoly, there exists a ν̂ < 1 such that for all ν > ν̂,

CSM∞ (ν) > SFB1 (ν) and PSM∞ (ν) > SFB1 (ν).

Moreover, limν→1
CSM∞ (ν)

SFB1 (ν)
= limν→1

PSM∞ (ν)

SFB1 (ν)
=∞ and the ratios CSM∞ (ν)

CS∞(ν)
, PSM∞ (ν)
PS∞(ν)

and SM∞ (ν)
S∞(ν)

are

finite and independent of ν for ν ∈ [0, 1).

In markets for products that are sufficiently “niche” both consumer surplus per buyer

and producer surplus per seller under a thick market monopoly exceed total surplus under ex

post efficient bilateral trade, and as ν approaches 1, the ratio of consumer surplus per buyer

and producer surplus per seller under the thick market monopoly over first-best welfare in

bilateral trade diverge to infinity. Of course, because social surplus is larger than the sum

of consumer and producer surplus, Proposition 3 implies that social surplus per trader pair

under the thick market monopoly over first-best welfare in the bilateral trade problem also

diverge to infinity as ν approaches 1.

Proposition 3 also states an invariance result for thick markets: that the severity of

monopoly harm does not vary with ν. This parallels the invariance result for bilateral trade

as stated in Proposition 3, which shows that the severity of the incentive problem for thin

products is independent of the nature of the product. Like Proposition 3, the results stated

in Proposition 3 are driven by the truncation invariance of the virtual type functions.

Proposition 3 has two potentially important policy implications. First, it means that the

justification for governments to intervene or not to intervene in thick monopoly markets is

the same for niche and for mass products.11 Second, in combination with Proposition 3, it

11See, however, Section 4.2, which shows that competing bilateral exchanges are more effective in curbing
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PSM∞ (ν))/SFB1 (ν) (orange) as functions of ν for F and G uniform.

implies that for ν sufficiently large, the consumer and producer benefits from thick market

monopolies relative to thin markets are first-order, while the harm from monopolies relative

to an efficient thick market is second order.

The following example illustrates the results of Proposition 3 when buyer values and

seller costs are uniformly distributed.

Example 1. As an illustration, assume that F and G are uniform. Then pB = 3/4 and

pS = 1/4, implying m = 1/4 and CSM∞ (ν) = PSM∞ (ν) = (1− ν)/32 while the market maker’s

profit is m(1 − ν)(pB − pS) = (1 − ν)/8. We also have CS∞(ν) = PS∞(ν) = (1 − ν)/8

and S∞(ν) = (1 − ν)/4, which implies that CSM∞ (ν)/CS∞(ν) = PSM∞ (ν)/PS∞(ν) = 1/4

and SM∞ (ν)/S∞(ν) = 3/4. Moreover, SFB1 (0) = 1/6 and, from (1), we have SFB1 (ν) = (1 −
ν)2SFB1 (0). Thus, the ratios CSM∞ (ν)/SFB1 (ν) and PSM∞ (ν)/SFB1 (ν) are equal to 3/(16(1 −
ν)). As illustrated in Figure 3, this is increasing in ν and larger than 1 for ν > 13/16 =

0.8125. The figure also displays (CSM∞ (ν)+PSM∞ (ν))/SFB1 (ν) = 3/(8(1−ν)), that is, the sum

of consumer surplus per buyer and producer surplus per seller divided by first-best welfare

under bilateral trade. This ratio is larger than 1 for ν > 5/8 = 0.625. This shows that

the matching benefits of thick monopoly markets come to bear for ν well below 1. Moreover,

if one were to adopt a social surplus perspective and also take the monopoly’s profit into

account, the monopoly would outperform first-best bilateral trade even with mass products

since social surplus under the thick market monopoly is 3/16, which exceeds SFB1 (0) = 1/6.12

the market power of thick market monopolies for mass products than for niche products.
12This is a point first noted in Loertscher et al. (2022).
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4 Discussion

We now provide a brief analysis of the increasing returns to scale from market making and

show that markets for niche products exhibit greater returns to scale. We also show that

mass products naturally mitigate the market power of monopoly market makers faced with

competing bilateral exchanges, whereas niche products do not. This provides a rationale

for more regulatory scrutiny for thick market monopolies for niche products than for mass

products.

4.1 How big are the returns to scale in market making?

We begin by analysing the returns to scale in market making. Specifically, we now consider

markets for niche products involving n pairs of buyers and sellers with independently dis-

tributed types. Let SFBn (ν) denote welfare per trader pair in a Walrasian market with n pairs

of buyers and sellers. A natural measure of market thickness is to consider the proportion

of the maximum increase in per trader pair surplus

Tn(ν) :=
SFBn (ν)− SFB1 (ν)

S∞(ν)− SFB1 (ν)

that is achieved by a market with n pairs of buyers and sellers. Here, S∞(ν) − SFB1 (ν)

captures the maximum achievable increase in welfare per trader pair as we move from a

perfectly thin market with a single pair of traders to a perfectly thick market in the limit

as n→∞. This measure of market thickness is analogous to that introduced in Loertscher

et al. (2022). Accordingly, Tn+1(ν)/Tn(ν) provides a natural measure of the returns to scale

in market making.

In order to compute Tn(ν) and Tn+1(ν)/Tn(ν), we start by computing expected welfare

SFBn (ν) in a Walrasian market with n pairs of buyers and sellers by exploiting its recursive

structure. Specifically, SFBn+1(ν) is given by SFBn (ν) plus the expected increase in welfare

associated with adding an additional seller to a market with n buyers and n sellers plus

the expected increase in welfare associated with adding an additional buyer to a market

with n buyers and n + 1 sellers. Given a niche market with n buyers and m sellers we let

X = {v1, . . . , vn, c1, . . . , cm} denote the joint set of trader valuations and costs, x(1) ≤ · · · ≤
x(n+m) denote the order statistics of this set and hν,i,n,m(x) denote the density of the ith

order statistic x(i), that is, the ith lowest draw. We then have the following proposition.

Proposition 4. Welfare in a Walrasian market with n+1 pairs of buyers and sellers satisfies
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Figure 4: Illustration of our measure of market thickness Tn and returns to scale in market
making Tn+1/Tn for uniform distributions and various values of ν and n.

the recursion

SFBn+1(ν) = SFBn (ν) + (1− ν)

∫ 1

0

∫ x

0

(x− c)g(c)hν,n,n,n(x) dc dx

+ (1− ν)

∫ 1

0

∫ 1

x

(v − x)f(v)hν,n+1,n,n+1(x) dv dx,

with SFB1 (ν) = (1− ν)2
∫ 1

0

∫ 1

c
(v − c)f(v)g(c) dv dc.

Figure 4 provides an illustration of the returns to scale in market making, Tn+1(ν)
Tn(ν)

, for the

special case of uniform distributions. Corollary B.1 in Appendix B.7 provides closed-form

solutions for the expressions plotted here. The figure shows that the returns to scale in

market making are larger in thinner markets and for niche products. In Appendix B.5 we

numerically show that these comparative statics also hold in an alternative model of niche

products involving liner virtual types, where products become more niche as the elasticity of

both demand and supply increase. Figure 4 highlights the importance of market thickness in

markets for niche products, suggesting that it may be undesirable for a regulator to attempt

to break up thick markets for such products. However, as we shall see in the next section,

niche products may also increase the market power of monopoly market makers.

4.2 Competing bilateral exchanges mitigate market power for mass

products

The double coincidence of wants problem is less severe for mass products than for niche

products because the probability of finding a trading partner in, say, a bilateral trade setting
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is larger. This suggests that bilateral trade offers a viable outside option for mass products,

and less so for niche products. Since outside options reduce buyers’ willingness to pay and

increase sellers’ reservation prices, one would expect that in mass product markets, the

market power of a thick market monopoly is constrained by the outside option offered by

bilateral trade. We are now going to formalize this notion by extending the model to allow

for the possibility that a perfectly thick large market coexists with bilateral trade.

Without this interpretation being necessary, one can think of the large market monopoly

as a digital platform and of buyers and sellers as living in otherwise disconnected, geo-

graphical markets such as different towns or countries, each of which is connected to the

platform. In line with the main analysis of this paper, we think of these local markets as

being characterized by bilateral trade.

To fix ideas, we assume that trade in a bilateral exchange occurs via a posted price

mechanism à la Hagerty and Rogerson (1987), where the posted price is the Walrasian price

p. After learning its type each agent has the option of trading via the thick market monopoly

or in a bilateral exchange where trade occurs if and only if the buyer and seller are willing

to trade at p. For simplicity, assume that we have a regular mechanism design problem,

which is to say that F and G exhibit increasing virtual type functions. This implies that if

the outside option of agents is 0, posting prices of pB and pS is optimal for the monopoly.

Even when agents have the outside option of joining a bilateral exchange, we assume that

the monopoly is restricted to posting prices.13

While there may be multiple equilibria, we focus on the equilibrium with monotone

sorting in which for any pB > p > pS, all buyers with v ∈ (v, 1] and all sellers with c ∈ [0, c)

trade via the monopoly and all the other types join the bilateral exchanges, where v > pB

and pS > c and 1−F (v) = G(c). Under the stipulated assumptions, the respective expected

utilities of a buyer of type v and seller of type c from the bilateral exchange is

UB(v) := (1− ν)(G(p)−G(c))(v − p) and US(c) := (1− ν)(F (v)− F (p))(p− c),

where v ≥ p and p ≥ c. If v ≥ pB and pS ≥ c, the payoffs of these agents from going to the

monopoly are v− pB and pS − c, respectively. It follows that v and c satisfy v− pB = UB(v)

and pS − c = US(c).14 Hence, for given v and c, we have pB = v−UB(v) and pS = c+US(c),

which implies that the monopoly’s spread is

pB − pS = v − c− (UB(v) + US(c)). (4)

13If agents have the outside option of joining a bilateral exchange, the optimal mechanism for the monopoly
is not known.

14Note that since U ′B(v) < 1 and U ′S(c) > −1 the single crossing condition holds.
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Since it is never optimal to choose pB and pS such that 1 − F (v) 6= G(c), we can replace

1−F (v) and G(c) by the monopoly’s “quantity” q ∈ [0, 1] (bearing in mind that if it chooses

q its quantity traded will be (1− ν)q). Replacing F (p) by 1−w and G(p) by w, the spread

in (4) thus simplifies to

pB − pS =
(
F−1(1− q)−G−1(q)

)
(1− (1− ν)(w − q)).

Figure 5 illustrates the effects of changes in ν on the inverse demand and supply functions

the monopoly faces when the agents have the outside option of participating in a bilateral

exchange, where the demand and supply functions are normalized by 1−ν. The monopoly’s

profit maximization problem can thus be written

max
q∈[0,1]

(
F−1(1− q)−G−1(q)

)
(1− (1− ν)(w − q))q, (5)

which has the same logic and structure as that underlying (3). Denote the solution to this

problem by q∗(ν).15 Denoting the prices associated with q∗(ν) by p∗B(ν) and p∗S(ν), we have

p∗B(ν) = F−1(1− q∗(ν))− (F−1(1− q∗(ν))− p)(1− ν)(w − q∗(ν)) (6)

and

p∗S(ν) = G−1(q∗(ν)) + (p−G−1(q∗(ν)))(1− ν)(w − q∗(ν)). (7)

15We do not scale this profit by 1−ν to make sure the maximization problem is well defined even as ν → 1
and to isolate the effects of ν via the outside options; the objective (5) can be thought of as a normalized
profit.
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Proposition 5. Suppose that π(q) := (F−1(1− q)−G−1(q)) q is concave. Then q∗(ν) is

strictly decreasing in ν with q∗(1) = m and the spread p∗B(ν)− p∗S(ν) is increasing in ν.

Proposition 5 provides a concise formalization of the notion that mass products mitigate

market power. As products become more niche and ν increases, the monopoly’s quantity

in the presence of competing bilateral exchanges decreases and its pricing becomes more

aggressive. Both effects reduce the sum of consumer and producer surplus at the monopoly.

If F and G are symmetric in such a way that p∗B(ν) = 1 − p∗S(ν) (for example, if F and G

correspond to uniform distributions), then the decreasing nature of the spread implies that

p∗S(ν) decreases in ν and p∗B(ν) increases in ν. Thus, (normalized) consumer surplus and

(normalized) producer surplus at the monopoly each decrease in ν.

The fact that q∗(ν) > m for any ν < 1 is of independent interest. An increase in

the monopoly’s quantity decreases the probability of trade in the bilateral exchange and,

consequently, the payoffs UB(v) and US(c). Therefore, the increase in the quantity traded by

the monopoly, relative to the model without bilateral exchanges, is driven by a foreclosure

motive.

In Appendix B.6 we perform an analogous analysis, assuming that the second-best mecha-

nism operates in the competing exchange and show that the key results derived here continue

to hold.

A number of messages emerge from the analysis in this section. First, market power is

naturally mitigated with mass products because bilateral trade offers viable outside options.

Consequently, abuse of market power is less of a concern with thick market monopolies

for mass products. By the same token, it is in the interest of the monopoly to drive out

even small (bilateral) exchanges because these offer viable outside options and constrain its

profit. Of course, in practice and in richer models, the monopoly may take additional or

alternative actions to drive out small rivals. This suggests that for mass products, the main

concern or focus should be on the foreclosure motive rather than on abuse of market power.

Second, for niche products, small bilateral exchanges provide a less viable outside option

for traders precisely because the monopoly generates more consumer and producer surplus

than bilateral trade for sufficiently large ν. In other words, for niche products there is no

natural mitigation of market power in the face of bilateral exchanges. Consequently, abuse

of market power is a greater concern and foreclosure of small exchanges is of less concern for

niche products.16

16As mentioned in the introduction, the competing bilateral exchanges we analyze differ from the competing
exchanges the literature has mostly focused on to date; see, for example, Gehrig (1993), Spulber (2002), Rust
and Hall (2003), and Loertscher and Niedermayer (2020). Even though matching in the competing exchange
in a model such as Gehrig’s is random, the competing exchange is a thick market because there is a continuum
of agents, and these agents participate only if they expect positive surplus from so doing. Hence, even if
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5 Conclusions

In this paper, we use an independent private values model to analyze the social costs and

benefits of thick markets relative to thin markets. We distinguish between niche and mass

products and model thin markets as bilateral exchanges and thick markets as markets with

a continuum of buyers and sellers. We show that whether a product is niche or mass neither

affects the severity of the incentive problem in thin markets nor the severity of the harm

to consumers, producers and social surplus under a thick market monopoly relative to an

efficient thick market. In contrast, the consumer, producer and social surplus benefits of

thick markets relative to thin markets increase as the products become more niche and are

unbounded as they become perfectly niche. Thus, for products that are sufficiently niche, the

benefits of thick market monopolies are first order and the harm from monopolies relative

to efficient thick markets are second order. These results are driven by the fact that for

niche products thick markets overcome the double coincidence of wants problem that haunts

thin markets. By the same token we show that competing bilateral exchanges constrain

the market power of thick market monopolies for mass products but not for niche products.

This provides some rationale for increasing regulatory scrutiny of thick market monopolies

for niche products.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Proof. The proof is confined to the weighted virtual value function as the proof for the

weighted virtual cost function is analogous. Using F (v) = Fν(v)−Fν(0)
1−Fν(0) and f(v) = fν(v)

1−Fν(0) , we

have Φα(v) = v − α 1−F (v)
f(v)

= v − α
1−Fν (v)
1−Fν (0)
fν (v)

1−Fν (0)
= v − α 1−Fν(v)

fν(v)
as claimed.

A.2 Proof of Proposition 1

Proof. Recall that for any α ∈ [0, 1] we let Φα(v) and Γα(c) denote the weighted ironed

virtual valuation and cost functions, respectively. Due to the truncation invariance of these

functions, they apply regardless of the value of the niche product parameter ν. The mech-

anism that maximizes the convex combination of welfare and profit with a weight of α on

profit then has the allocation rule Qα(v, c) = 1(Φα(v) ≥ Γα(c)) that induces trade if and

only if Φα(v) ≥ Γα(c). Therefore, for any α ∈ [0, 1], the mechanism that implements the

allocation rule Qα is uniquely pinned down and does not vary with the parameter ν.17 For

any α ∈ [0, 1], we thus have

Sα1 (ν) = E[(v − c)Qα(v, c)]

= E[(v − c)1(Φα(v) ≥ Γα(c))]

=

∫ 1

0

∫ 1

0

(v − c)1(Φα(v) ≥ Γα(c))fν(v)gν(c) dc dv

= (1− ν)2
∫ 1

0

∫ 1

0

(v − c)1(Φα(v) ≥ Γα(c))f(v)g(c) dc dv

= (1− ν)2E[(v − c)Qα(v, c)]

= (1− ν)2Sα1 (0).

Using SFB1 (ν) = (1 − ν)2SFB1 (0) then yields
Sα1 (ν)

SFB1 (ν)
=

Sα1 (0)

SFB1 (0)
, which shows that this ratio is

independent of ν as required.

17When α = 0, we obtain a unique mechanism by taking the welfare-maximizing mechanism that otherwise
maximizes the designer’s profit.
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A.3 Proof of Proposition 2

Proof. Using S∞(ν) = (1 − ν)S∞(0), SFB1 (ν) = (1 − ν)2SFB1 (0) and the definition of s∞

yields S∞(ν)

SFB1 (ν)
= s∞

1−ν . Moreover, since ν < 1 and s∞ > 1, we have S∞(ν)

SFB1 (ν)
> 1. Taking the

limit as ν → 1 yields the final statement of the proposition.

A.4 Proof Proposition 3

Proof. We begin by proving the first statement of the proposition. For the sake of notational

brevity, we write CS and PS instead of CSM∞ and PSM∞ throughout the proof of this first

statement. We have already proven the proposition for the regular case. In general (that

is, without imposing regularity) the optimal quantity of the large mass product monopoly,

denoted m, is such that

Φ(F−1(1−m)) = Γ(G−1(m)),

where Φ(v) ≡ Φ1(v) and Γ(c) ≡ Γ1(c).
18 It remains to determine the associated pricing

mechanism. If Φ(F−1(1−m)) = Φ(F−1(1−m)) and Γ(G−1(m)) = Γ(G−1(m)), the problem

is equivalent to the regular case analyzed in Section 3.3, and we are done. There are two

additional generic and symmetric cases that need to be considered: (i) Φ(F−1(1 − m)) >

Φ(F−1(1−m)) and Γ(G−1(m)) = Γ(G−1(m)) and (ii) Φ(F−1(1−m)) = Φ(F−1(1−m)) and

Γ(G−1(m)) < Γ(G−1(m)).19

In case (i), sellers are paid pS = G−1(m) and producer surplus is m(1−ν)E[pS−c|c ≤ pS]

(as it is in the regular case). Letting [F−1(1 −m2), F
−1(1 −m1)] denote the ironed range

of Φ containing F−1(1 −m), buyers with values above F−1(1 −m1) are always served and

pay p1B = m2−m
m2−m1

F−1(1 −m1) + m−m1

m2−m1
F−1(1 −m2), while buyers with values v ∈ [F−1(1 −

m2), F
−1(1−m1)] participate in a lottery where they are served with probability m−m1

m2−m1
and

pay p2B = F−1(1 − m2) if they obtain a unit (see Loertscher and Muir, 2022). Consumer

18This is a straightforward generalization of the analysis in Section 3 of Loertscher and Muir (2022) to
two-sided private information.

19At first glance it might appear as though we need to consider a third case where Φ(F−1(1 − m)) >
Φ(F−1(1−m)) and Γ(G−1(m)) < Γ(G−1(m)). This case is knife-edge because it requires that the constant
regions of the ironed virtual type functions coincide. In this case there are necessarily multiple quantities
that are profit-maximizing for the monopoly and at least one such quantity coincides with a previous case.
That is, without loss of generality we can restrict attention to mechanisms that involve rationing on at most
one side of the market. Within the set of profit-maximizing quantities, consumer and producer surplus are
maximized at the largest quantity; see display (8) in Loertscher and Muir (2022) for consumer surplus (the
results for producer surplus are analogous). Our results continue to hold for any monotone selection of the
optimal quantity.
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surplus with mass products is (see Loertscher and Muir, 2022, p.15)

CS(0) =

∫ m1

0

F−1(1− x)dx+
m−m1

m2 −m1

∫ m2

m1

F−1(1− x)dx−R(m),

where R(m) =
∫ m
0

Φ(F−1(1− x))dx.

In case (ii), buyers pay pB = F−1(1−m) and consumer surplus is m(1− ν)E[v− pB|v ≥
pB] (as it is in the regular case). Letting [G−1(m1), G

−1(m2)] denote the ironed range of

Γ containing G−1(m), sellers with costs below G−1(m1) are always served and are paid

p1S = m2−m
m2−m1

G−1(m1) + m−m1

m2−m1
G−1(m2), while sellers with costs c ∈ [G−1(m1), G

−1(m2)]

participate in a lottery where they are given the chance to produce with probability m−m1

m2−m1

and are paid p2S = G−1(m2) if they do so. Accordingly, producer surplus is

PS(0) = C(m)−
∫ m1

0

G−1(x)dx− m−m1

m2 −m1

∫ m2

m1

G−1(x)dx,

where C(m) =
∫ m
0

Γ(G−1(x))dx is the convex hull of the cost of procuring m units.

Truncation invariance ensures that cases (i) and (ii) do not vary with ν ∈ [0, 1). In

particular, denote per buyer consumer surplus by CS(ν) and per seller producer surplus by

PS(ν). Consumer and producer surplus in cases (i) and (ii) are then, respectively,

CS(ν) = m(1− ν)E[v − pB|v ≥ pB] and PS(ν) = (1− ν)PS(0) (8)

and

CS(ν) = (1− ν)CS(0) and PS(ν) = m(1− ν)E[pS − c|c ≤ pS]. (9)

Combining all of these cases we have

CS(ν)

SFB1 (ν)
=

1

1− ν
cs and

PS(ν)

SFB1 (ν)
=

1

1− ν
ps (10)

where

cs :=
CS(0)

SFB1 (0)
and ps :=

PS(0)

SFB1 (0)
.

Observe that cs > 0 and ps > 0. Thus, the ratios are increasing in ν. Letting

ν̂ = max{1− cs, 1− ps} (11)

the first statement of the proposition follows.
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We now prove the second statement of the proposition. Taking the limit as ν → 1 in

(10) yields limν→1
CSM∞ (ν)

SFB1 (ν)
= limν→1

PSM∞ (ν)

SFB1 (ν)
= ∞ as required. From (8) and (9) we also

see that CSM∞ (ν) and PSM∞ (ν) are directly proportional to 1 − ν. Moreover, our previous

analysis implies that the optimal mechanism of the monopoly does not vary with ν and

hence monopoly profits are also directly proportional to 1 − ν. Combining this with the

expressions for CS∞(ν), PS∞(ν) and S∞(ν) provided in Section 3.3 shows that the ratios
CSM∞ (ν)
CS∞(ν)

, PSM∞ (ν)
PS∞(ν)

and SM∞ (ν)
S∞(ν)

are finite and independent of ν for ν ∈ [0, 1), which concludes the

proof.

A.5 Proof of Proposition 4

Proof. Suppose that we have a market with n buyers with valuations v1, . . . , vn and m sellers

with costs c1, . . . , cm. Observing that an ex post efficient allocation gives the m objects to

the m agents with the largest types in the set X = {v1, . . . , vn, c1, . . . , cm}, it follows that a

price is market-clearing if and only if it is between the mth and m + 1st highest elements

in X, which is equivalent being between the nth lowest and n + 1st lowest elements of X.

Thus, the lowest Walrasian price given X is p(X) := x(n) and the highest Walrasian price is

p(X) := x(n+1). Notice that p(X) is either a buyer’s value or a seller’s cost, and likewise for

p(X). We then have the following well-known observation that p(X) is the social marginal

product of a seller with cost c < p(X) who arrives to a market characterized by X, since

either the arriving seller replaces another seller with a higher cost (which happens if p(X) is

a cost) or it expands the quantity traded by one unit (which happens if p(X) is a value). If

the arriving seller’s cost is above p(X), its social marginal product is 0. Likewise, p(X) is the

social marginal cost of a buyer with value v > p(X) who arrives to a market characterized by

X, since either the arriving buyer replaces another buyer with a lower value (which happens

if p(X) is a value) or it expands the quantity traded by one unit (which happens if p(X) is

a cost). If the arriving buyer’s value is below p(X), its social marginal product is 0. Thus,

with an additional buyer with value v social surplus increases by max{v−p(X), 0} and with

an additional seller with cost c, social surplus increases by max{p(X) − c, 0}. These last

observations follow from the fact that with single-unit demands and supplies, p(X) are the

trading buyers’ and p(X) are the trading sellers’ VCG payments, which represent the social

marginal cost and products of these agents.

If an additional seller with cost c is added to a market with n buyers and n sellers, its

expected welfare contribution is thus

E[(x(n) − c)1(c ≤ x(n))] =

∫ 1

0

∫ x

0

(x− c)gν(c)hν,n,n,n(x) dcdx.
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Similarly, if an additional buyer with valuation v is then added to a market with n buyers

and n+ 1 sellers, its expected welfare contribution is thus

E[(v − x(n+1))1(v ≥ x(n+1))] =

∫ 1

0

∫ 1

x

(v − x)fν(v)hν,n+1,n,n+1(x) dvdx.

Putting all of this together yields the statement in the proposition.

A.6 Proof of Proposition 5

Proof. We start by noting that the profit function in (5) can be rewritten as

Π(q) := π(q)(1− (1− ν)(w − q)).

Note that for ν ∈ [0, 1) we must have q∗(ν) ∈ [0, w) by the definition of w, the monotonocity

of the supply and demand functions and the fact that the monopoly always optimally charges

a positive bid-ask spread. This also implies that for any q ∈ [0, w), we have π(q) > 0.

Differentiating the profit function with respect to q yields

Π′(q) = π′(q)(1− (1− ν)(w − q)) + π(q)(1− ν).

By construction, π′(m) = 0 and π(m) > 0. Thus, for ν ∈ [0, 1), we have Π′(m) > 0. Suppose

that ν ∈ [0, 1) and that q∗ < w satisfies the first-order condition Π′(q∗) = 0. This implies

that (1− ν)π(q∗) > 0 and 1− (1− ν)(w − q) > 0 and, consequently, π′(q∗) < 0. Taking the

second derivative of the profit function with respect to q, we have

Π′′(q) = π′′(q)(1− (1− ν)(w − q)) + 2π′(q)(1− ν).

Then if ν ∈ [0, 1) and q∗ satisfies Π′(q) = 0, we have π′(q∗) < 0 (by our previous observation)

and π′′(q∗) ≤ 0 (since, by assumption, π is a concave function). Combining these facts shows

that if Π′(q) = 0 holds, then we necessarily have Π′′(q) < 0. Thus, Π is a quasiconcave

function and the second-order condition for a maximum is satisfied whenever the first-order

condition holds.

Now that we have established the first-order condition that characterizes q∗, we determine

how q∗ varies with ν. Differentiating the first-order condition

Π′(q) = π′(q∗(ν))(1− (1− ν)(w − q∗(ν))) + (1− ν)π(q∗(ν)) = 0
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with respect to ν and dropping the argument of q∗(ν) for the sake of brevity yields

π′(q∗)

(
w − q∗ + (1− ν)

dq∗

dν

)
+ π′′(q)(1− (1− ν)(w − q∗))dq

∗

dν
= 0

Rearranging this expression, we have

[π′′(q)(1− (1− ν)(w − q∗)) + 2(1− ν)π′(q∗)]
dq∗

dν
= − (π′(q∗)(w − q∗)− π(q∗)) ,

and hence
dq∗

dν
= − π′(q∗)(w − q∗)− π(q∗)

π′′(q∗)(1− (1− ν)(w − q∗)) + 2(1− ν)π′(q∗)
.

Suppose ν ∈ [0, 1). Then since π is concave (which implies that π′′(q∗) ≤ 0), π′(q∗) < 0 and

q∗ < w we have π′′(q∗)(1− (1− ν)(w− q∗)) + 2(1− ν)π′(q∗) < 0. Moreover, since π′(q∗) < 0,

we also have π′(q∗)(w− q∗)−π(q∗) < 0. Putting all of this together yields dq∗

dν
< 0 and q∗(ν)

is strictly decreasing in ν as required.

We are left to establish that the spread p∗B(ν)− p∗S(ν) is increasing in ν. To see this, let

πBT (q, ν) :=
(
F−1(1− q)−G−1(q)

)
(1− (1− ν)(w − q))q

be the profit function in the presence of bilateral exchanges. A revealed preference argument

shows that πBT (q∗(ν), ν) is increasing in ν. To see this, consider ν0 < ν1. Then because the

monopoly could keep the quantity at q∗(ν0) when the parameter is ν1 > ν0, we have

πBT (q∗(ν1), ν1) > πBT (q∗(ν0), ν1)

=
(
F−1(1− q∗(ν0))−G−1(q∗(ν0))

)
(1− (1− ν1)(w − q∗(ν0)))q∗(ν0)

>
(
F−1(1− q∗(ν0))−G−1(q∗(ν0))

)
(1− (1− ν0)(w − q∗(ν0)))q∗(ν0)

= πBT (q∗(ν0), ν0).

Hence, πBT (q∗(ν), ν) is increasing in ν. By definition,

πBT (q∗(ν), ν) = (p∗B(ν)− p∗S(ν))q∗(ν).

Since q∗(ν) decreases in ν, p∗B(ν)−p∗S(ν) must increase in ν for πBT (q∗(ν), ν) to be increasing

in ν.

26



B Extensions and robustness

The setup presented in Section 2 was constructed so that the virtual valuation and cost

functions were invariant to the niche product parameter ν. This feature together with the

symmetry of the setup simplified the technical aspects of the analysis whilst providing a

setting suitable for elucidating the key messages of this paper. However, the main insights

and results of this paper extend beyond this setting as we now show.

B.1 Asymmetric masses of buyers and sellers

The first assumption that we can easily relax is the assumption that there is an equal mass of

buyers and sellers on each side of the market in the thick Walrasian market setting analyzed

in Section 3.2. In particular, without loss of generality, we can always normalize the mass

of agents on one side of the market, say buyers, to 1. Let µ > 0 denote the mass of sellers.

Fixing µ > 0, we then immediately recover the results of Proposition 1, Proposition 2 and

Proposition 3. Graphically, we accommodate this extension by appropriately rescaling the

inverse supply curves illustrated in Figure 2. That is, for each value of ν ∈ [0, 1) we replace

the inverse supply curve P S
( ·
1−ν

)
with the rescaled inverse supply curve P S

(
·

µ(1−ν)

)
. This

leaves us with a Walrasian price p(µ) and quantity w(µ) that do not vary with ν and,

consequently, all of our results carry over to this setting.

B.2 Asymmetric niche product parameters

The next assumption that we can readily relax is the assumption that a symmetric niche

product parameter ν applies to both sides of the market. Specifically, we can allow for a

niche product parameter of νB that applies to the buyers’ side of the market and a parameter

of νS that applies to the sellers’ side of the market. In this asymmetric setting, the Walrasian

quantity traded and price now vary with both νB and νS. However, the virtual type functions

are unaffected. We recover results analogous to those stated in Proposition 1, Proposition

2 and Proposition 3 if we take the limit as νB → 1 and νS → 1 in a manner such that the

ratio (1− νB)/(1− νS) is fixed.

B.3 Varying overlapping support of distributions

Our setup in Section 2 was constructed so that for any value of ν ∈ [0, 1), the region of

overlapping support for the distributions Fν and Gν was always the interval [0, 1]. In this

section we show that the spirit of our analysis in Section 3 extends to an alternative setting

where the region of overlapping support varies with ν.
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We again let ν denote the niche market parameter and construct the setup so that a

product becomes increasingly niche as ν increases. However, in this alternative setup we

take ν ∈ (−1, 0]. When ν = 0 we now assume that buyer values v ∈ [0, 1] are drawn from

a distribution F with density f that has full support on [0, 1] and seller costs c ∈ [0, 1] are

drawn from a distribution G with density g that has full support on [0, 1]. In the market

for a niche product with parameter ν ∈ (−1, 0) we assume that buyer values v ∈ [aν , 1] with

aν > 0 are drawn from a distribution Fν with density fν that has full support on [aν , 1] and

seller costs c ∈ [0, bν ] with bν < 1 are drawn from a distribution Gν with density gν that has

full support on [0, bν ]. We further assume that, for all ν ∈ (−1, 0), aν and bν are such that

F (aν) = −ν = 1−G(bν) and that, for all v ∈ [aν , 1] and c ∈ [0, bν ],

Fν(v) =
F (v) + ν

1 + ν
and Gν(c) =

G(c)

1 + ν
.

Notice that this implies that aν is decreasing in ν and bν is increasing in ν. We let ν denote

the largest value of ν ∈ (−1, 0] such that aν ≥ bν .

In this setup, in a market for a product with niche parameter ν ∈ (−1, 0), buyers values

are truncated from below so that buyer values are distributed on the interval [aν , 1] and seller

costs are distributed on the interval [0, bν ], where aν is decreasing in ν and bν is increasing in

ν. This implies that increasing ν results in less favourable distributions in the sense that, for

all ν, ν ′ ∈ (−1, 1) with ν ′ > ν, v ∈ [0, 1] and c ∈ [0, 1], Fν′(v) ≥ Fν(v) and Gν(c) ≥ Gν′(c).

We let Φ and Γ respectively denote the virtual valuation and virtual cost function that

correspond to the distributions F and G. The truncation invariance of these functions imply

that the same virtual valuation and virtual cost functions are valid for any ν ∈ (−1, 0),

on the appropriately restricted domain. Observe that for ν ≤ ν, the two supports do not

overlap. This implies that full trade is efficient and the first-best outcome is possible in the

bilateral trade problem. Consequently, for ν ≤ ν, the Walrasian quantity traded is 1 and

SSB1 (ν)

SFB1 (ν)
=

S∞(ν)

SFB1 (ν)
= 1.

Thus, there are no benefits from thicker markets.

For all ν > ν we have aν < bν . Since the distribution supports overlap in this case,

full trade is not efficient and the impossibility result of Myerson and Satterthwaite (1983)

holds. Recall that for a given α ∈ [0, 1], we let Φα(v) and Γα(c) denote, respectively, the

weighted ironed virtual valuation and cost functions and Qα(v, c) = 1(Φα(v) ≥ Γα(c)) denote

the allocation rule that induces trade if and only if Φα(v) ≥ Γα(c). Recall also that the

second-best mechanism maximizes equally weighted ex ante expected social surplus subject
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to incentive compatibility, individual rationality and no-deficit constraints. This mechanism

is therefore characterized by the unique value of α such that the allocation rule Qα(v, c)

generates zero budget surplus. That is, the second-best mechanism is characterized by the

unique value α∗ν satisfying

E[(Φ(v)− Γ(c))Qα(v, c)] = 0.

In the setup from Section 2, the second-best mechanism (and hence α∗ν) was invariant to ν.

Here, as ν increases in value beyond ν, the Walrasian quantity traded w(ν) will decrease in

ν and α∗ν will become strictly positive and monotonically increase in ν. Formally, we have

the following result.

Proposition B.1. The parameter α∗ν that characterizes the second-best mechanism increases

in ν ∈ (−1, 0] with α∗ν = 0 for all ν ≤ ν. Moreover, there exists ν < 0 such that α∗ν = α∗0 for

all ν ≥ ν.

Proof. Let ν, ν ′ ∈ (−1, 0] with ν ′ > ν. Let Rα
1 (ν) denote revenue under the allocation rule

Qα. Then by construction we have

R
α∗ν
1 (ν) = 0

and

R
α∗ν
1 (ν ′) =

∫ 1

0

∫ 1

0

(Φ(v)− Γ(c))1(Φα∗ν (v) ≥ Γα∗ν (c)) dFν′(v) dGν′(c).

Since the integrand (Φ(v)− Γ(c))1(Φα∗ν (v) ≥ Γα∗ν (c)) is increasing in v and decreasing in c,

the distribution Fν first-order stochastic dominates the distribution Fν′ and the distribution

Gν′ first-order stochastic dominates the distribution Gν , we have

R
α∗ν
1 (ν ′) ≤ R

α∗ν
1 (ν) = 0.

Hence, α∗ν′ ≥ α∗ν as required. Since full trade is optimal for any ν ≤ ν, we have α∗ν = 0

for all ν ≤ ν. Moreover, by the impossibility result of Myerson and Satterthwaite (1983),

α∗0 > 0. This implies that when ν = 0, there exists cutoff types vSB > 0 and cSB < 1 such

that any buyer with v ≤ vSB and any seller with c ≥ cSB never trade under the second-best

mechanism. Thus, setting v = min{ν ∈ (−1, 0) : aν ≤ vSB, bν ≥ cSB} we have α∗ν = α∗0 for

all ν ≥ ν as required.

Proposition B.1 implies that
SSB1 (ν)

SFB1 (ν)
decreases in ν. Since w(ν) is less than 1 and decreasing

ν, it also follows that S∞(ν)

SFB1 (ν)
increases in ν. Interestingly, α∗ν will cease increasing in ν before
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ν reaches 0, that is, before aν = 0 and bν = 1. Indeed, letting α∗ denote the second-best

mechanism parameter that corresponds to the case ν = 0, we have

α∗ν = α∗

for all ν ≥ max{ν0, ν1}, where ν0 and ν1 are such that Φα∗(aν0) = 0 and Γα∗(bν1) = 1. For

example, when F and G are uniform, we have ν0 = ν1 = 1/4 with aν0 = 1/4 and bν1 = 3/4.

To summarize, this extension merely increases the complexity of the model without al-

tering the main messages that emerge from the analysis in Section 3.

B.4 Exponential distributions

An alternative way we can model niche products is to consider distributions with unbounded

support. We can then create increasingly niche products by shifting probability mass towards

the tails of the distributions in an appropriate fashion. For example, suppose we take v ∈
[0,∞) with F (v) = 1 − e−v and c ∈ [log(a),∞) with G(c) = 1 − ae−c, where a > 0 is

a constant. This specification implies that in a perfectly thick market with a contiuum of

traders the Walrasian price and quantity traded are given by p(a) = ln(1 + a) and w(a) =

1/(1+a), respectively. Increasing the parameter a pushes more probability mass towards the

right tail of the sellers’ cost distribution and leads to a decrease in the Walrasian quantity.

Thus, the parameter a plays a similar role to the parameter ν in the model from Section 2.

Expressed in terms of a, we have

SFB1 (a) =

1
2
(a− 2 ln(a)), 0 < a ≤ 1

1
2a
, a > 1

and

S∞(a) = ln(1 + a)− ln(a).

This implies

S∞(a)

SFB1 (a)
=


2(ln(1+a)−ln(a))

(a−2 ln(a)) , 0 < a ≤ 1

2a(ln(1 + a)− ln(a)), a > 1.

Since a = 0 corresponds to having w = 1 we have

lim
a→0

S∞(a)

SFB1 (a)
= 1.

30



Moreover, we also have

lim
a→∞

S∞(a)

SFB1 (a)
= 2.

Solving for the second-best mechanism, in this setting we have

Φα(v) = v − α and Γα(c, a) = α

(
ec

a
− 1

)
+ c.

The value α∗a that characterizes the second-best mechanism (see the previous subsection for

a more detailed explanation of this) then satisfies

2

3
e−α (α + eα(α− 2)α(Chi(α)− Shi(α))− 1) = 0,

where the functions Chi(·) and Shi(·) denote the hyperbolic cosine integral and the hyper-

bolic sine integral, respectively. Numerical calculations then show that the ratio
SSB1 (a)

SFB1 (a)
is

decreasing in a and is bounded from below by 0.854367.

B.5 Linear virtual types

An alternative modelling approach is to consider settings in which products become more

niche as the elasticity of supply and demand increases. To fix ideas we consider a setting

with linear virtual type functions in which a single parameter a > 0 controls the elasticity

of both demand and supply, as well as the Walrasian quantity. Specifically, we assume that

buyers draw their values v ∈ [0, 1] from the distribution Fa(v) = 1− (1−v)a and sellers draw

their costs c ∈ [0, 1] from the distribution Ga(c) = ca. This yields a Walrasian quantity of

w(a) = 2−a and price of p = 1/2.
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Figure 6: Demand and supply for the specification with linear virtual types.

Thus, this model exhibits similar behavior with respect to the parameter a as the model

in the main body does with respect to the parameter ν. Here, as a increases and a product
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becomes more niche, the demand and supply curves become increasingly elastic and the

Walrasian quantity w(a) decreases. Per trader welfare in the thick market limit is S∞(a) =∫ w(a)
0

(F−1(1−q)−G−1(q))dq. Figure 6 displays demand and supply for three different values

of a. As a becomes small (large), the Walrasian quantity goes to 1(0).
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Figure 7: The matching benefits S∞(a)/SFB1 (a) of thick markets are unbounded as the
Walrasian quantity goes to 0 (panel a). In contrast, the incentive benefits SFB1 (a)/SSB1 (a)
are bounded (panel b). In both panels we use a = − ln(w)/ ln(2).

In this setup, the weighted virtual type functions are given by

Φa,α(v) = v − α1− v
a

and Γa,α(c) = c+ α
c

a
.

Although the weighted virtual type functions and hence the ratio
SSB1 (a)

SFB1 (a)
now vary with the

parameter a, we can still bound the relative cost of incentives.

Proposition B.2. The ratio SSB1 (a)/SFB1 (a) is decreasing in a for a ≥ 0 and is bounded

below by 2/e ≈ 0.73. In contrast, lima→∞
S∞(a)

SFB1 (a)
=∞.

Proof. Routine calculations yield

SSB1 (a)

SFB1 (a)
=

4−a
(
a+1
2a+1

)−2a
Γ(2a+ 2)

(a+ 1)Γ(2a+ 1)
and

S∞(a)

SFB1 (a)
=

2−aΓ(2 + 2a)

aΓ(a)Γ(2 + a)
,

where (in a slight abuse of notation) here Γ denotes the gamma function. This is decreasing

in a for a ≥ 0 and taking the limit as a→∞ yields 2/e.

With regard to the thick Walrasian market, Proposition 2 still holds as stated for this

setup if we replace the limit ν → 1 with the limit a→∞. While the invariance result that
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Figure 8: Illustration of our measure of market thickness Tn and returns to scale in market
making Tn+1/Tn for uniform distributions and various values of a and n.

holds for the parameterization with truncation of Proposition 1 does not extend to the setting

with linear virtual types, it remains to be the case that the variation in SSB1 (a)/SFB1 (a) as

one varies a is bounded—it goes from 0.73 as a → ∞ to 1 as a → 0—and dwarfed by the

variation in S∞/S
FB
1 .

Consider now the thick market monopoly. Since the virtual type functions are linear (and

hence monotone), the optimal trading mechanism consists of a posted price pB(a) for buyers

and pS(a) for sellers. Since both the demand and supply schedules become increasingly elastic

as a increases, the spread pB(a)− pS(a) decreases in a and lima→∞ pB(a) = lima→∞ pS(a) =

p(a) = 1/2. Proposition 3 also continues to hold as stated in this setting if we again replace

the limit ν → 1 with a→∞.

With regard to the returns to scale in market making, we cannot analytically compute

Tn and Tn+1/Tn in this model. However, the numerical calculations displayed in Figure 8

show that this model exhibits the same comparative statics as those in our baseline model.

B.6 Competing exchanges: Second-best bilateral trade

In this section we reconsider the analysis from Section 4.2 assuming that the second-best

mechanism is used in the competing bilateral exchanges. For this analysis, we restrict our-

selves to the case in which F and G are uniform.

As before, we focus on the equilibrium with monotone sorting in which all buyers with

v ∈ (v, 1] and all sellers with c ∈ [0, c) trade via the monopoly and all the other types join

the bilateral exchanges. We let UB(v) denote the expected utility of a buyer of type v from

the bilateral exchange and US(c) denote that of a seller of type c. Routine calculations show
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that the second-best mechanism has α∗ = 1/3 and is such that

UB(v) =
1− ν

32

(
v2 − 2v(c+ 4v)− 15c2 + 8cv + 16v2

)
and

US(c) =
1− ν

32

(
16c2 + 8c(v − c− 4)− 15v2 − 2v(c− 12) + c(c+ 8)

)
.

It again follows that v and c satisfy20

v − pB = UB(v) and pS − c = US(c)

and the monopoly’s spread is

pB − pS = v − c− (UB(v) + US(c)). (12)

Again, noting that it is never optimal to choose pB and pS such that 1 − F (v) 6= G(c), we

can replace 1 − F (v) and G(c) by the monopoly’s “quantity” q ∈ [0, 1]. The monopolist’s

profit can then be written

π(q) = (1− 2q − (UB(v) + US(c))q =
q

16
(q − 2q)(9ν − 6(1− ν)q + 7).

The corresponding first-order condition that pins down the optimal quantity q∗ is then given

by

7 + 36(q∗)2(1− ν) + 9ν − 8q∗(5 + 3ν) = 0.

Solving this quadratic equation yields the two solutions

q∗(ν) =
10 + 6ν +

√
37 + 102ν + 117ν2

18(1− ν)
,

10 + 6ν −
√

37 + 102ν + 117ν2

18(1− ν)
.

Imposing the requirement that q∗(ν) ∈ [0, 1] then leaves us with

q∗(ν) =
10 + 6ν −

√
37 + 102ν + 117ν2

18(1− ν)
.

Note that in this case q∗(ν) is increasing in ν. The spread of the monopolist is then given

20Note that since U ′B(v) < 1 and U ′S(c) > −1 the single crossing condition holds.
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Figure 9: Equilibrium quantity q∗(ν) (panel (a)) and the equilibrium spread p∗B(ν) − p∗S(ν)
(panel (b)) as a function of ν for F and G uniform.

by

pB − pS =
−99ν2 + 3

(√
117ν2 + 102ν + 37− 14

)
ν + 5

√
117ν2 + 102ν + 37 + 13

216(1− ν)
,

Note that as before the spread of the monopolist is increasing in ν. These comparative

statics are illustrated in Figure 9.

B.7 Closed form solutions and illustration

For the special case of uniform distributions, we can provide closed-form expressions for

social surplus, as well as our measures of market thickness and the returns to scale in market

making.

Corollary B.1. If F and G are uniform distributions, then we have

SFBn (ν) =
n

(4n+ 2)(2n− 1)

(
n(2n− 1) + (n(2n+ 1)− 1)ν +

2n∑
i=2

νi

)
.

Consequently, we have

Tn(ν) =
2(n− 1)(2n− 1)− 6(n− 1)(2n+ 1)ν2 + 2(4n2 − 1)ν3 − 6ν2n+1

(4n2 − 1) (2ν + 1)(1− ν)2

and

Tn+1(ν)

Tn(ν)
=

(2n− 1) [2(1− ν)2(2ν + 1)n2 + 3ν3 (1− ν2n) + n (8ν3 − 9ν2 + 1)]

(2n+ 3) [1 + 3n (ν2 − 1) + 3ν2 − ν3 + 2n2(ν − 1)2(2ν + 1)− 3ν2n+1]
.
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For mass products (i.e. setting ν = 0), this yields

SFBn (0) =
n2

4n+ 2
, Tn(0) =

2(n− 1)

2n+ 1
and

Tn+1(0)

Tn(0)
=

n(2n+ 1)

2n2 + n− 3
.

Proof. Adopting the notation from the proof of Proposition 4 and combining

hν,n,n,n(x) =
n−1∑
i=0

(n− i)
(
n

i

)(
n

i

)
fν(x)Fν(x)i(1−Gν(x))i(1− Fν(x))n−i−1Gν(x)n−i

+
n−1∑
i=0

(n− i)
(
n

i

)(
n

i

)
gν(x)(1− Fν(x))iGν(x)iFν(x)n−i(1−Gν(x))−i+n−1

and

hν,n+1,n,n+1(x)

=
n∑
i=0

(n− i+ 1)

(
n+ 1

i

)(
n

i

)
fν(x)Fν(x)i(1−Gν(x))i(1− Fν(x))n−iGν(x)n−i

+
n−1∑
i=0

(n− i)
(
n

i

)(
n+ 1

i+ 1

)
gν(x)(1− Fν(x))i+1Gν(x)iFν(x)n−i(1−Gν(x))−i+n−1.

with the results of Proposition 4 yields the desired expressions.
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