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1 Introduction

Larger markets are better, all else equal, because they can execute the same trades as

smaller, standalone markets, and sometimes execute more or more valuable trades. Con-

sistent with this, Internet-based matchmakers that realize powerful data-driven increasing

returns to scale, such as Amazon, Google, and Spotify, have come to prominence in the

digital age. Firms that operate in environments for which efficiency dictates that a sin-

gle firm is optimal are naturally referred to as digital monopolies.1 Just as was the case

with natural monopolies, digital monopolies call for antitrust scrutiny and possibly regu-

lation. Indeed, recently digital monopolies have received intense scrutiny from antitrust

authorities around the world.2

Traditionally, regulation and policy intervention have worked best when they were

guided by well-defined objectives such as consumer or social surplus. In this tradition, we

analyze the pros and cons of interventions in an environment in which a digital monopoly

can use data to either improve matching only or, instead, to improve matching and to

adjust pricing. Although this distinction has typically not been formulated explicitly, it

is a key issue in ongoing antitrust debates. As a case in point, it makes a difference to

advertisers whether Google uses its data only to better match advertisers to consumers

or, alternatively, to improve matching and to adjust the (reserve) prices that it charges

advertisers.

Based on a parsimonious model in which more data improves the distribution from

which the consumer draws his value, with the improvement being in the sense of hazard

rate dominance, we show that the distinction has striking implications for the consumer

surplus effects of privacy protection. If data are used exclusively to improve match values,

then consumer surplus increases monotonically in the data to which the digital monopoly

has access. Put differently, in this case privacy protection unambiguously harms the

1To the extent that private firms are marketmakers and matchmakers, the idea that, under efficiency,
these firms are monopolies—and that there is thus no obvious competitive benchmark—is natural and
nothing new. Indeed, as noted by Malamud and Rostek (2017), the basic economic model of a market is
a centralized exchange at which all trade occurs. The novelty and virulence of issues associated with such
firms arises because digitalization and globalization have increased the force of the underlying returns to
scale in marketmaking.

2In November 2018, the U.S. Federal Trade Commission held hearings on “The Intersection of Big
Data, Privacy, and Competition.” In March 2019, the United Kingdom released a report on “Unlocking
Digital Competition: Report of the Digital Competition Expert Panel.” In June 2019, the Australian
Competition & Consumer Commission released its “Digital Platforms Inquiry: Final Report.” Also in
2019, the European Commission released “Competition Policy for the Digital Era.” The U.S. Department
of Justice announced in July 2019 that it is “Reviewing the Practices of Market-Leading Online Platforms”
(Press Release 19-799).
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consumer: Someone who likes Mumford and Sons or Joy Division will typically be pleased

to be referred to a band like The Killers or, respectively, The National. In sharp contrast,

when the monopoly also uses the information about the consumer’s preferences for pricing

purposes, the consumer surplus consequences of privacy protection are less clear cut. To

a lesser or greater extent, the monopoly extracts part of the additional surplus generated

by improvements in matching. In the limit, as the matching becomes perfect, consumers

have no private information left and hence lose their entire information rent, while the

monopoly captures the entire social surplus. In both cases, social surplus is maximized

when all information is revealed to the digital monopoly. However, when data are also

used for pricing, the monopoly is not only able to perfectly match the product to the

consumer, but also to match the price to the consumer’s value, thereby, in the limit,

depriving the consumer of all surplus.

As an example, consider the online firm Ziprecruiter, which matches potential em-

ployers to jobseekers. The data collected by Ziprecruiter regarding the characteristics of a

potential employer both improves match values, to the benefit of the employer, and allows

Ziprecruiter to more precisely estimate the employer’s willingness to pay for the service,

to the detriment of the employer.3

From a consumer surplus perspective, the central issue is not the protection of privacy

but rather the protection of information rents. In our model, fixing the level of data held

by the digital monopoly, the protection of information rents can be achieved by regulating

prices.4 If the price is fixed, then data can only be used to improve match values, and

improving match values is in the digital monopoly’s best interest because it increases the

probability of a trade, and, of course, is in the consumer’s best interest.

The obvious flip side to the dire implications for consumer surplus when privacy van-

ishes completely and the digital monopoly’s pricing is not restricted is that producer

surplus increases and becomes identical to social surplus. Digital monopolies can thus

be expected to resist attempts to regulate their pricing. Apart from this natural, and in

many ways inevitable, conflict about the division of social surplus, a potential drawback

to price regulation is that it may decrease the digital monopoly’s incentives to invest in

3According to Dubé and Misra (2017), potential employers purchase a monthly subscription to
Ziprecruiter to access resumés that the online system matches with the employer’s needs. Job seekers
can upload resumes at no charge. The matching process relies on the employer’s responses to questions
regarding characteristics of its business and the specific job posting. Only after these questions are
answered does Ziprecruiter generate a price quote, at which point it must decide whether to subscribe.

4Price regulation is a traditional policy instrument for dealing with natural monopolies. Disregarding
the digital monopoly’s resistance to price regulation, regulating the pricing of a digital monopoly may
be straightforward insofar as it “only” requires inspection of the algorithms that the digital monopoly
employs.
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data analytics and product quality. If price regulation decreases equilibrium investments

substantively, then there is a tradeoff between the social surplus and consumer surplus

that can be achieved via regulating pricing.

That being said, this paper is exclusively concerned with issues pertaining to what

are sensibly called private values settings, in which matching individuals’ preferences as

closely as possible is what a benevolent social planner would do. With private values,

consumers who like ABBA are best off if they also get to listen to, say, Bee Gees, Cher,

and Boney M.

The remainder of this paper is organized as follows. Section 2 describes the model.

In Section 3, we derive results and discuss price regulation. Section 4 extends the model

to allow for investments into data analytics and product quality. Related literature is

discussed in Section 5, and Section 6 contains conclusions.

2 Model

Consider a setup with one consumer (the buyer) and one digital monopoly (the seller),

both assumed to be risk neutral. The consumer has value v for one unit of a product

provided by the digital monopoly, which is his private information, drawn from the dis-

tribution Fn. The parameter n > 0 represents the extent of data collection by the digital

monopoly. The digital monopoly does not observe the consumer’s value, but knows Fn(·).
Data collection is modelled by assuming that

Fn(v) ≡ F n(v),

where F is a distribution with support [v, v] and bounded density f(v) > 0 for all

v ∈ (v, v). Increases in n correspond a higher match value and a correspondingly lower

degree of consumer privacy.5 Although we treat n as a continuous variable for technical

convenience, there is a natural interpretation when n is an integer because then the setup

is equivalent to the digital monopoly having n products, with the consumer’s value being

drawn independently from the distribution F for each of these products, and the digi-

tal monopoly offering the consumer the product for which the consumer has the highest

5While it is not strictly necessary to formally define these terms, it is certainly possible and maybe
desirable. A natural definition of match value is the expectation of v conditional on exceeding some
threshold t ∈ [v, v]: E[v | v ≥ t]. Likewise, a measure of consumer privacy is the probability that v
is below some threshold t ∈ (v, v): Pr(v ≤ t). This notion of privacy is meaningful because it is the
consumer’s ability to pretend to be a lower type that is the source of the consumer’s information rent.
Because Fn′(v) ≤ Fn(v) for n′ > n, increases in n increase the match value and decrease privacy.
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value.6 For limiting values of n, we also have a clear interpretation: as data collection

goes to infinity, the density fn converges to a point mass on v = v, and as data collection

goes to zero, fn converges to a point mass on v = v.

We assume that 1−F (v)
f(v)

is nonincreasing in v, which is sufficient to ensure that the

consumer’s virtual value function, denoted Φn(v) and given by

Φn(v) = v − 1− Fn(v)

fn(v)
,

is increasing for all n ≥ 1. This implication follows from the monotonicity of the hazard

rate, which we establish, along with other properties, in the following lemma:

Lemma 1. For n ≥ 1, 1−Fn(v)
fn(v)

is nonincreasing in v, and for any n > 0 and v < v,
1−Fn(v)
fn(v)

increases in n and goes to infinity as n→∞.

Proof. See Appendix A.

The digital monopoly’s expected profit when its set the price p and has a cost c is

Πn(p) = (p− c)(1− Fn(p)),

which we interchangeably refer to as producer surplus. To focus on the interesting case

when there are potentially gains from trade, we assume that c < v. Moreover, we assume

that c ≥ v. This implies that, for any finite n, the monopoly does not sell with probability

one. Consumer surplus is

CSn(p) =

∫ v

p

(v − p)fn(v)dv =

∫ v

p

(1− Fn(v))dv. (1)

Consequently, social surplus is

SSn(p) = CSn(p) + Πn(p).

To be clear and upfront about this, the point of our model is not that it is particularly

innovative or creative, but rather that it allows us to capture fundamental features and

6Alternatively, one could view the digital monopoly or a regulatory agency as choosing the level of
consumer privacy, denoted by ρ, where the consumer’s value distribution is Fρ(v) ≡ 1− (1−F (v))ρ. This
setup has the interpretation, when ρ ≥ 2 is an integer, that a consumer with privacy preference parameter
ρ is willing to forego the top ρ − 1 out of ρ randomly selected products from the digital monopoly in
order to preserve the privacy of his data. The tradeoffs we identify remain the same in this alternative
parameterization.
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trade-offs pertaining to ongoing policy debates. Therefore, we take it to be great news if

many other, off-the-shelf models in industrial organization generate the same predictions

and give rise to the same policy recommendation as our simple model.

3 Results

Differentiating Πn(p) with respect to p yields a first-order condition that is satisfied with

pn such that Φn(pn) = c. For n ≥ 1, by Lemma 1, the second-order condition is satisfied

whenever the first-order condition is.7 Thus, we have the following characterization of the

digital monopoly’s optimal price:

Theorem 1. The digital monopoly’s optimal price pn increases in n for n ≥ 1 and goes

to v as n goes to infinity, limn→∞ pn = v.

Proof of Theorem 1. As argued above, for n ≥ 1, the digital monopoly’s optimal price

satisfies Φn(pn) = c. Lemma 1 implies that Φn(p) increases in p and that for all v < v,

Φn(v) decreases in n, which implies that pn increases in n. Next consider the result that

limn→∞ pn = v. For any n, Φn(v) = v, which implies that pn is bounded above by v.

Because {pn}n=∞
n=1 is an increasing, bounded sequence, limn→∞ pn exists. Suppose that

limn→∞ pn = p < v. Then, by Lemma 1, there exists n sufficiently large that Φn(p) < c,

which implies that pn > p, contradicting the supposition that p is the limit. Thus,

limn→∞ pn = v. �

Theorem 1 implies that a reduction in the consumer’s degree of privacy both increases

match quality and also causes the digital monopoly to charge ever increasing prices to

the consumer. In addition, using Theorem 1, the boundedness of the integral in (1), and

limn→0 fn(x) = limn→0 nF
n−1(x)f(x) = 0, it follows that

lim
n→0

CSn(pn) = 0 = lim
n→∞

CSn(pn).

Therefore, given that for all n ∈ (0,∞), CSn(pn) > 0, it follows that CSn(pn) is maximized

at some value n∗ ∈ (0,∞). This gives us the following corollary:

Corollary 1. Consumer surplus is maximized at an interior value of n.

7When n < 1, there may be multiple solutions to the first-order condition. The second-order condition
then requires the Φn(pn) be increasing at pn.
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With no data collection, match values deteriorate and total expected surplus goes

to zero, harming all parties. In contrast, with high levels of data collection, match val-

ues are high and the digital monopoly extracts all of the consumer’s information rent,

which is good for the digital monopoly and society, but leaves the consumer again with

zero expected surplus. The optimum for the consumer is an intermediate level of data

collection.

In contrast, the expected surplus of the digital monopoly is increasing in data collec-

tion. Assuming that n∗ is unique, then because SSn(pn) is bounded above by v − c, it

follows that an increase in n increases both CSn(pn) and SSn(pn) for n < n∗. However, for

n > n∗, the digital monopoly has an incentive to increase data collection, whereas the con-

sumer would want to decrease data collection. In other words, for n > n∗, a social surplus

perspective (and the digital monopoly’s perspective) give rise to policy recommendations

that are detrimental to the consumer.

(a) Optimal price
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Figure 1: Panel (a) Optimal price pn as a function of n. Panel (b): Expected consumer, producer, and
social surplus at the optimal price pn as functions of n. Consumer surplus is maximized at n∗ ≈ 3.17.
Both panels assume that Fn(v) = vn and c = 0.

As illustrated in Figure 1, for the case of F uniform on [0, 1] and c = 0, the digital

monopoly maximizes its profit by setting a personalized price to the consumer of:8

pn =

(
1

n+ 1

) 1
n

, (2)

8In the parameterization considered here, although the virtual value function Φn(v) ≡ v − (1 −
Fn(v))/fn(v) is not necessarily strictly increasing for all v ∈ [v, v], Φn(v) is increasing when it is positive,
which implies that for any p ∈ (0, 1], there is a unique v such that Φn(v) = p. Thus, Φ−1

n (p) is well
defined for p ∈ (0, 1].
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with the properties that

lim
n→∞

pn = 1, lim
n→0

pn =
1

e
and Fn(pn) =

1

n+ 1
.

In particular, in the limit as n goes to infinity, the digital monopoly generates value v for

the consumer, but then extracts it all through a price that is also equal to v. Indeed, in

the limit the digital monopoly captures all of social surplus:

lim
n→∞

Πn(pn)− SSn(pn) = 0.

Further, if limn→∞ Fn(pn) = 0, as is the case when F is uniform and c = 0, then

lim
n→∞

Πn(pn) = v − c = lim
n→∞

SSn(pn).

In this case, a digital monopoly that is neither restricted in the use of data nor in pricing

maximizes social surplus and captures all of it.9 This reflects the strong incentives digital

monopolies have for increasing the amount of data and improving data analytics by, for

example, acquiring new data sources. It also suggests that digital monopolies can be

expected to have strong incentives to resist policies that restrict pricing.

Because the benefits from big data accrue disproportionally, and in the limit uniquely,

to the digital monopoly in the absence of price constraints, one could consider some form

of price regulation. A natural approach would seem to be Ramsey pricing, according

to which the regulated price p̃n maximizes αΠn(p) + (1 − α)SSn(p) for some α ∈ (0, 1).

Unfortunately, Ramsey pricing does not solve the problem because, as n becomes large,

p̃n converges to v for any α > 0.10 As an alternative, the regulator can choose p̃ such that

the share of social surplus accruing to the consumer stays constant: CSn(p̃) = αSSn(p̃),

where α ∈ (0, 1) measures the consumer’s “fair” share. Using the definition of SSn(p)

9If instead limn→∞ 1 − Fn(pn) < 1, then although the digital monopoly captures all of the social
surplus created, it does not maximize social surplus because the probability of trade remains below the
efficient level. That is, the digital monopoly prices above the level that would maximize social surplus.
It is, however, an open question whether distributions F exist such that limn→∞ Fn(pn) > 0.

10This result follows by the same logic as in the proof of Theorem 1. To see this, notice that the
first-order condition for the Ramsey price is equivalent to Φα,n(p̃n) = c, where Φα,n(v) = v − α(1 −
Fn(v))/fn(v), which is increasing in v by assumption. For any n, Φα,n(v) = v, and by Lemma 1, for any
v < v, (1 − Fn(v))/fn(v) increases in n and goes to infinity as n goes to infinity. Thus, p̃n is increasing
in n and bounded above by v, which implies that limn→∞ p̃n exists. Suppose that limn→∞ p̃n = p̃ < v.
Then there exists n sufficiently large that Φα,n(p̃) < c, which implies that pn > p̃, contradicting the
supposition that p̃ is the limit. Thus, for any α > 0, limn→∞ p̃n = v.
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and rearranging yields
1− α
α

=
(1− Fn(p̃))(p̃− c)∫ v

p̃
(1− Fn(v))dv

. (3)

Because the right side increases in p̃ for any p̃ ≤ Φ−1
n (c) and ranges from 0 to infinity as

p̃ varies from c to v,11 it follows that for any fixed α, there is a unique price that satisfies

(3). Moreover, this price decreases in α and is bounded away from v for any α > 0.

4 Incentives to invest

The stark (and perhaps dismal) prediction of this model of big data and consumer privacy

sheds light on optimal regulatory policies for digital monopolies. However, our results are

obtained under the assumption that increasing match value for a given set of data is cost-

less for the monopoly. We now relax this assumption by studying the digital monopoly’s

incentives to invest. Throughout this section, we assume that the regulated price does

not vary with n.

4.1 Investments in data analytics

We first analyze the digital monopoly’s marginal incentives to invest in data analytics. We

contrast the marginal incentives for such investment when the price is chosen optimally

by the digital monopoly to when the price is fixed at a lower level, e.g., as a result of price

regulation.

The effect of an increase in n on the digital monopoly’s profit is

∂Πn(p)

∂n
= −(p− c)F n(p) ln(F (p)) > 0.

As one would expect, for a given price, the digital monopoly’s expected payoff is increasing

in the level of data analytics. Further, note that

∂2Πn(p)

∂n∂p
= −F n(p) ln(F (p))− (p− c)nF n−1(p)f(p) ln(F (p))− (p− c)F n−1(p)f(p). (4)

Because the first two terms of (4) are positive and the final term goes to zero as p goes

11The right side of (3) is zero at p̃ = c. Using L’Hôpital’s rule allows one to show that it goes to infinity
as p̃ goes to v.
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to c, it follows that for p sufficiently small, we have

∂2Πn(p)

∂n∂p
> 0.

This implies that regulation that imposes a sufficiently low price reduces the digital

monopoly’s marginal incentive to invest in data analytics relative to a digital monopoly

that is free to choose its price. Further, if F is the uniform distribution on [0, 1] and

c = 0, then for any price p less than the optimal price pn, we have ∂2Πn(p)
∂n∂p

> 0.12 Thus, in

this case, any binding price regulation reduces the digital monopoly’s incentive to invest

in data.13 Using these results, we can connect “big data” and privacy concerns with

incentives to invest:

Proposition 1. Price regulation reduces a digital monopoly’s marginal incentive to invest

in data analytics if the imposed price is sufficiently low, and for some distribution and

cost assumptions, any binding price regulation reduces the digital monopoly’s marginal

incentive to invest in data analytics.

Proposition 1 shows that for the setting we consider here, price regulation imposed

on a digital monopoly reduces the digital monopoly’s marginal incentive to invest in data

analytics.14

4.2 Product quality investments

A digital monopoly can also improve match values by directly improving the quality of

the product it offers. In our model, such investments can be captured as investments that

12To see this, note that for the uniform case, ∂2Πn(p)
∂n∂p = −pn(1 + (1 + n) ln p), which is positive if

p < e
−1
1+n , which, using (2), holds for all p < pn.

13The result extends straightforwardly beyond the uniform distribution to any distribution F (v) = vk

on [0, 1] with k > 0. To see this, let n̂ denote the parameter that measures data for a given k. Then, by
choosing n = n̂k, the analysis is the same as for the uniform distribution.

14Our results can be reinterpreted to speak to the issue of “fake news” on social media (Allcott and
Gentzkow, 2017). Suppose that a consumer has value v = 1 for news, which is common knowledge,
but incurs a cost to check whether the news is “fake news,” and that cost is the consumer’s private
information. Suppose that the digital monopoly can take steps to fact check content, which reduces the
need for the consumer to check for fake news, resulting in a first-order stochastically dominated shift in
the consumer’s cost distribution. The digital monopoly’s “price” may take the form of advertisements
or subscription fees. Then if c is drawn from Gn, the consumer’s value x = v − c has distribution
Fn(x) ≡ 1−Gn(v − x). So, if Gn(x) = 1− (1−G(x))n, then Fn(x) = (1−G(v − x))n, and our results
apply. The consumer prefers some fact checking, but not extreme fact checking (in the extreme, the price
is 1 and the consumer has no surplus). An unregulated social media platform has stronger incentives to
fact check than does a regulated one.
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directly improve the underlying value distribution F . For example, the streaming giant

Netflix has become a vertically integrated firm that produces a considerable amount of

content in-house (Koblin, 2017). Arguably, Netflix has an advantage in content production

because of its access to viewer data, which allows it to tailor content to fit the preferences

of customers. This is one important source of the golden age documented by Waldfogel

(2017). For regulatory interventions and policy debates more broadly, it is important

to understand how these incentives depend on the amount of available data and on the

digital monopoly’s price.

To shed light on these questions, we now stipulate that given product quality invest-

ment I by the monopoly, the consumer’s value v is drawn from the distribution F (v, I)

with support [v, v], with increases in I inducing a first-order stochastic shift in the dis-

tribution, i.e., ∂F (v, I)/∂I ≤ 0, with a strict inequality for an open set of values of v.

Here, we take the monopoly’s price to be fixed at some value p and ask how the marginal

incentives vary with n and p.15

The monopoly’s profit given p, n, and I is now

Π(p, n, I) = (p− c)(1− F n(p, I)).

The first derivative with respect to I is

∂Π(p, n, I)

∂I
= −(p− c)nF n−1(p, I)

∂F (p, I)

∂I
≥ 0,

where the inequality is strict if ∂F (p, I)/∂I < 0. To see how this marginal incentive varies

with n, note that the cross partial derivative is

∂2Π(p, n, I)

∂I∂n
= −(p− c)nF n−1(p, I)

∂F (p, I)

∂I
[1/n+ lnF (p, I)],

which is positive if and only if

− lnF (p, I) <
1

n
.

Thus, the marginal incentives for product quality investment increase in n (i.e., data)

if and only if the monopoly’s price is high enough. We summarize with the following

proposition:

Proposition 2. ∂2Π(p,n,I)
∂I∂n

> 0 if and only if p is sufficiently large.

15The first partial derivatives are not affected if p is chosen optimally given n and I because of the
envelope theorem. However, the cross-partials become unwieldy when p is treated as an endogenous
variable.
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Proposition 2 implies that for sufficiently high-priced products, allowing a digital

monopoly to have more information on consumers could induce the digital monopoly

to invest in increased product quality. Put differently, the proposition means that price

regulation has the potential to eliminate the complementarity between product quality

investments and investments in data analytics. This highlights a potential drawback of

price regulation. It could eliminate the positive feedback between investments in high

product quality and data analytics.

5 Related Literature

Beyond online search engines, which are a prime example of digital monopolies that aim at

improving match values, well-documented benefits to consumers and society arise exactly

because consumers do not protect their privacy. Waldfogel (2017) calls the current era a

golden age of music, movies, books, and television, documenting how digitalization has

led to this new era.

While everything may look new in the digital age, our analysis suggests that digital

monopolies parallel their “natural” counterparts and that policy tools like price regulation

that were useful for balancing tradeoffs between producer and consumer surplus may

remain valid instruments in the digital age. Other parallels exist and can be used to

inform policy. For example, the data that users generate through their online behaviour

has a public goods component in that the information gleaned from it can be used to

improve other consumers’ match values. This problem is similar to the classic public

health problem of vaccination, where major benefits from an individual’s vaccination

accrue to society as a whole rather than the individual who obtains the vaccination.

Concurrent policy debates often evolve along the lines that consumers should be given

the property rights to their data, sometimes accompanied by expressions of frustration

that consumers do not care (enough) about protecting their data. While this proposition

has appeal to economists, and maybe to larger audiences as well, it deserves discussion

and context.

First, the vaccination problem provides a useful benchmark. The typical health policy

prescription is not that every one should be free to choose whether they (or their offspring)

obtain vaccination against contagious diseases. Much to the contrary, in many instances

policy mandates individuals to take the individually costly action of being vaccinated if

the benefits to society are deemed to sufficiently outweigh these costs.

Second, part of the appeal of the proposition that consumers should have rights over

12



their data stems from the Coase Theorem (Coase, 1960), according to which, if transac-

tion costs are negligible, the initial allocation of property rights only affects the division

of social surplus—that is, how the pie is shared, not the size of the pie. Accordingly,

absent transaction costs, giving consumers ownership of their data might well shift the

balance between consumer and producer surplus towards consumers. The validity of the

argument depends on whether transaction costs are negligible. Claiming that they are

negligible raises the question why these platforms emerge in the first place. Of course,

there is no single model or analysis that captures the rich nature of problems in the digital

age. However, the lesson on optimal property rights that emerges from the mechanism

design literature, where the source of transaction costs is the private information about

values and costs, is not that agents on one side of the market (say, consumers) should be

given all the property rights.16 Indeed, the gist of the celebrated impossibility theorem of

Myerson and Satterthwaite (1983), with its precursor in Vickrey (1961), is that with ex-

treme ownership structures, efficient incentive compatible and individually rational trade

is impossible without running a deficit. In contrast, efficient trade may be possible with

shared ownership structures (Cramton et al., 1987; Neeman, 1999; Che, 2006; Figueroa

and Skreta, 2012).17 Obviously, this does not prove that extreme ownership is always

suboptimal, but it certainly provides a cautionary tale against the proposition that it is

optimal.18

The increasing returns in market making mentioned in the introduction that are at

the heart of digital monopolies relate to Williamson’s puzzle of selective intervention

(Williamson, 1985), according to which there would be no limits to firm size because

an integrated firm could always replicate what standalone firms do, and sometimes do

better.19 In this paper, we relate this driving force of digital monopolies to monopoly

pricing, including price discrimination and matching.20 We show that the desirability of

privacy protection for consumers, which has recently been studied in a variety of contexts

(Shelanski, 2013; Acquisti et al., 2016; Jullien et al., 2018; Goldfarb and Tucker, 2019),

16For example, in the case of music streaming, where “big data” has successfully played a key role in
generating value by matching consumers to music, certain payments to artists and composers are fixed
by statute.

17Delacrétaz et al. (2019) provide a generalization of the impossibility theorem with extreme ownership.
18Loertscher and Wasser (2019) provide conditions for extreme ownership to be optimal when the

objective involves profit motives.
19See Crémer (2010) for discussion and Loertscher and Riordan (2019) for partial resolution in an

incomplete contracting environment.
20Our work is distinct from the literature on information design (for an overview, see Bergemann and

Morris, 2019) in that in our model (i) consumers do not behave as information designers and (ii) additional
data improves the seller’s prior rather than changing its posterior.
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critically depends on what data is used for—matching only or matching and pricing.21

6 Conclusions

Like natural monopolies, digital monopolies arise because of increasing returns to scale.

Exploitation of these increasing returns increases social surplus but, without limits on the

use of data for pricing, may reduce consumer surplus. While privacy protection reduces,

and in the limit eliminates, the market power of digital monopolies, privacy protection

also reduces, and in the limit eliminates, the social surplus created by digital monopolies.

In particular, in our setting, consumer harm arises only by the combination of improved

match values due to privacy reduction and more aggressive pricing by the monopoly.

For a fixed price, the consumer always benefits from the improved matches that come

with a reduction in privacy. Based on this, we conclude that competition policy should

aim at protecting consumers’ information rents rather than their privacy. While privacy

protection is a possible means to achieve this end, our analysis shows that other, more

traditional tools, such as regulating prices, may be preferable from both a consumer and

social surplus perspective.

Our paper brings to light new questions regarding the form of optimal price regula-

tion in the digital age. Even within our baseline model without investment, traditional

approaches such as Ramsey pricing may not work satisfactorily because the elasticity of

demand is endogenous to the amount of data available to the monopoly. In response, we

propose price regulation that keeps the ratio of producer to consumer surplus fixed as

social surplus grows due to increasing returns to scale, raising the practical question as to

how it can be implemented. In richer models that account explicitly for the nature of the

data available to the monopoly, the question arises of what prices may depend on. For

example, if prices vary with consumer location, they might sensibly be required to only

depend on anonymous data such as distance from the closest distribution center and be

prohibited from depending on the consumer’s delivery address itself. These, and related,

questions are excellent problems for future research.

21This distinction is largely absent from concurrent policy debates (Chapter 5 Crémer et al., 2019).
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A Appendix: Proofs

Proof of Lemma 1. Observe that (dropping the argument v)[
1− Fn

fn

]′
=
nF n−2[−f 2F n − (1− F n)f ′F − (n− 1)f 2]

(nfF n−1)2 .

This is nonpositive if and only if

−f 2F n − (1− F n)f ′F − (n− 1)f 2 ≤ 0. (5)

Given our assumption that (1−F )/f is nonincreasing, the smallest value that f ′ can take

without violating the assumed monotonicity of (1− F )/f is −f 2/(1− F ). Consequently,

we have

−f 2F n − (1− F n)f ′F − (n− 1)f 2 ≤ −f 2F n +
(1− F n)f 2F

1− F
− (n− 1)f 2

=
f 2

1− F
[−F n(1− F ) + (1− F n)F − (n− 1)(1− F )]

=
f 2

1− F
[1− F n − n(1− F )] .

It follows that (5) holds if the function q(F ) ≡ 1 − F n − n(1 − F ) defined for F ∈ [0, 1]

is not more than 0. At F = 1, q(1) = 0. Moreover, q′(F ) = n(1 − F n−1) is nonnegative

using our assumption that n ≥ 1 (and positive for all n > 1 and F < 1), proving that

q(F ) ≤ 0 for all F ∈ [0, 1]. This completes the proof that (5) holds.

Turning to the next part of the lemma, 1−Fn(v)
fn(v)

is increasing in n for all v < v if and

only if the function Q(n) ≡ 1−Fn

nFn−1 is increasing in n for all F ∈ [0, 1). Differentiating, we

have

Q′(n) =
− ln(F )F nnF n−1 − (1− F n)F n−1 − (1− F n) ln(F )nF n−1

(nF n−1)2
,

which is greater than 0 if and only if −n ln(F ) − (1 − F n) > 0. For F = 1, −n ln(F ) −
(1 − F n) = 0. We now show that −n ln(F ) − (1 − F n) is decreasing in F . Taking the

derivative, we obtain −n/F + nF n−1, which is less than 0 for all F < 1. This completes

the proof that 1−Fn(v)
fn(v)

is increasing in n.

To show that 1−Fn(v)
fn(v)

is unbounded in n for F (v) < 1, we first rewrite it as

1− Fn(v)

fn(v)
=

1

f(v)

[
1

nF n−1(v)
− F (v)

n

]
.
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Because limn→∞ nF
n−1(v) = 0 for v ≤ v (which is equivalent to F (v) ≤ 1), it follows that

for any v ≤ v

lim
n→∞

1

nF n−1(v)
=∞.

Because limn→∞
F (v)
n

= 0, for any v < v,

lim
n→∞

1− Fn(v)

fn(v)
=∞,

which completes the proof. �
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Dubé, J.-P. and S. Misra (2017): “Scalable Price Targeting,” University of Chicago.

Figueroa, N. and V. Skreta (2012): “Asymmetric Partnerships,” Economics Letters,

115, 268–271.

Goldfarb, A. and C. Tucker (2019): “Digital Economics,” Journal of Economic

Literature, 57, 3–43.

Jullien, B., Y. Lefouili, and M. H. Riordan (2018): “Privacy Protection and

Consumer Retention,” Toulouse School of Economics Working Paper No. TSE - 947.

Koblin, J. (2017): “Netflix Says It Will Spend Up to $8 Billion on Content Next Year,”

New York Times, October 16, 2017.

Loertscher, S. and M. H. Riordan (2019): “Make and Buy: Outsourcing, Vertical

Integration, and Cost Reduction,” American Economic Journal: Microeconomics, 11,

17



105–123.

Loertscher, S. and C. Wasser (2019): “Optimal Structure and Dissolution of Part-

nerships,” Theoretical Economics, 14, 1063–1114.

Malamud, S. and M. Rostek (2017): “Decentralized Exchange,” American Economic

Review, 107, 3320–3362.

Myerson, R. and M. Satterthwaite (1983): “Efficient Mechanisms for Bilateral

Trading,” Journal of Economic Theory, 29, 265–281.

Neeman, Z. (1999): “Property Rights and Efficiency of Voluntary Bargaining under

Asymmetric Information,” Review of Economic Studies, 66, 679–691.

Shelanski, H. A. (2013): “Information, Innovation, and Competition Policy for the

Internet,” University of Pennsylvania Law Review, 161, 1663–1705.

Vickrey, W. (1961): “Counterspeculation, Auction, and Competitive Sealed Tenders,”

Journal of Finance, 16, 8–37.

Waldfogel, J. (2017): “How Digitization Has Created a Golden Age of Music, Movies,

Books, and Television,” Journal of Economic Perspectives, 31, 195–214.

Williamson, O. E. (1985): The Economic Institutions of Capitalism, New York: Free

Press.

18


	Introduction
	Model
	Results
	Incentives to invest
	Investments in data analytics
	Product quality investments

	Related Literature
	Conclusions
	Appendix: Proofs

