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Abstract

Without widespread immunization of the population or complete eradication of the
virus, the road to recovery from the current COVID-19 lockdowns will follow a path
that strikes the difficult balance between the social and economic benefits of liberty and
the death toll from the disease. We provide an approach that combines epidemiology
and economic models by taking as given the constraint that the maximum capacity
of the health care system must not be exceeded. Treating the transmission rate as a
decreasing function of the severity of the lockdown, we determine the minimal lockdown
that satisfies this constraint.

Keywords: COVID-19, SIR models, capacity constraints, managing an epidemic

JEL-Classification: H51, I18

∗We are grateful for suggestions and comments by Gabriel Carroll, Chris Edmond, Ian Harper, Zi Yang
Kang, Paul Milgrom, Gary Stoneham and the theory seminar audience at the University of Melbourne.
Financial support by the June and Samuel Hordern Endowment is also gratefully acknowledged.
†Department of Economics & Centre for Market Design, Level 4, FBE Building, 111 Barry Street, Uni-

versity of Melbourne, Victoria 3010, Australia. Email: simonl@unimelb.edu.au.
‡Department of Economics, Stanford University. Email: evmuir@stanford.edu

1



1 Introduction

Without widespread immunization of the population (for example, due to the development

of a vaccine) or complete eradication of the virus, the road to recovery from the ongoing

coronavirus-induced lockdowns will require sustained vigilance to ensure that the spread of

the virus remains at a manageable level for a country’s or region’s healthcare system. At the

same time, this recovery ought to start as soon as possible for a number of reasons, which

include the curtailing of liberty that these lockdowns impose, the mental and other health

issues associated with social distancing and isolation, and the tremendous economic cost

that has no parallel in living memory. In other words, recovery requires the transition from

a paradigm in which eradication of an epidemic is the goal to one in which the epidemic is

managed.

In this article, we show how this can be done by providing a methodology that permits

return to some kind of normalcy while keeping the spread of the virus at a level that even at

the peak of the endemic does not exceed the capacity constraint of the health care system.

Specifically, we use a standard epidemiology model—a simple SIR (Susceptible-Infectious-

Recovered) model—to predict the peak of the epidemic while treating the rate of transmission

as the variable that the policymaker can influence by choosing the severity of a lockdown.

We treat as a hard constraint the capacity of the health care system, that is, the maximum

number of COVID-19 patients that it can handle per period of time at the peak of the crisis.1

Of course, this capacity constraint will need to be defined in such a way that patients with

other—but no less severe—needs for care are still able to access treatment.2

The main contribution of this paper is to formulate an operational constraint that pro-

vides policymakers with guidance for how to manage an epidemic which is too costly to

eradicate; to incorporate this constraint into a standard epidemiology model; and derive

implications for the severity of the lockdown that is necessary to respect that constraint.

It serves the purpose of a proof of concept. The model can and will need to be refined

1To fix ideas, throughout the paper we will talk about the capacity of the healthcare system as our
binding constraint. However, the framework outlined in this paper can accommodate any constraint that
can be expressed as a function of the number of COVID-19 cases that occur at the peak of the epidemic.
This constraint can be interpreted as a normative criterion that society has to choose. For example, suppose
that society viewed the number of deaths that would occur as a result of using the capacity of the healthcare
system as a binding constraint as unacceptable. Then one could instead treat a fixed proportion of the
healthcare system that is utilized at the height of the crisis as a binding constraint (such as requiring that
the healthcare system never exceeds 80% capacity). An alternative, but mathematically equivalent, approach
would be to place an upper bound on the number of deaths per day at the peak of the crisis, which may be
in line with some of the concurrent debates (see, e.g., the New York Times article “The Cold Calculations
America’s Leaders Will Have to Make Before Reopening”).

2In a public health catastrophe, this is not always the case; see, for example, this New York Times article:
“The Pandemic’s Hidden Victims: Sick or Dying, but Not From the Virus’.’
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subsequently.

The data required to apply the proposed approach are accurate estimates of the transmis-

sion rate, reliable measures of the spread of the disease, and the percentage of the infected

persons that require treatment. Some of these data can and will need to be obtained us-

ing ongoing random sampling of the population. Importantly, for practical purposes what

we propose can be implemented using continuous, real-time updating and adjustments. To

the extent that the population is continuously and randomly sampled and tested, decision

makers will have a reasonably clear real-time picture of the spread of the virus, which help

mitigate the problems of time-lag and inertia.

To convey a sense of the magnitude of the potential economic and social costs, consider

the unemployment rate during the Great Depression in the U.S., then and now the world’s

largest economy, and the weekly unemployment filings in the U.S. in the wake of the ongoing

coronavirus-related lockdown in 2020.3 The immediate consequences of the Great Depression

were mass poverty and economic devastation, and at least indirectly, the rise of Hitler in

Germany.4 The unemployment rate in the U.S. was 4.4% in March 2020 and is by many

analysts expected to rise to 17% or above in April 2020. This means that an increase in the

unemployment rate of roughly 12.5 percentage points—which during the Great Depression

took two years to materialize—is expected to happen within a month.

Great D. 1929 1930 1931 1932 1933

Unemployment rate 3.2 8.7 15.9 23.6 24.9

2020 Mar 14 Mar 21 Mar 28 Apr 4 Apr 11

Unemployment filings 282 3,307 6,867 6,615 5,245

Not surprisingly, there has been a recent upsurge of interest in SIR models in economics.

Atkeson (2020) provides an introduction of this modeling approach to economics, which is

standard in mathematical biology (see, e.g., Murray, 2002). Alvarez et al. (2020) apply

an optimal control approach to an SIR model to derive the optimal lockdown policy that

trades off the cost of death against economic output. Our approach is similar to theirs in

that we derive an optimal lockdown policy. In contrast to Alvarez et al. (2020), in our

approach this policy is the minimal lockdown necessary to satisfy the constraint that the

capacity of the health care system not be exceeded. As such, it takes as given that capacity

constraint and does not involve an explicit tradeoff between lives saved and output. In recent

3Sources: thebalance.com/Reinhart and Rogoff (2009) and edition.cnn.com/US Department of Labor.
Prior to March 21, 2020, the record number of weekly unemployment filings was 695,000 in October 1982
(i.e. shortly before the peak of the early 1980s recession).

4See Appendix A for a short discussion of the Great Depression and comparisons with today’s economic
data.
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days and weeks, there has also been a rise in more informal commentary and discussions of

the problems at hand (see, e.g., Gilbert et al., 2020) and analyses of tradeoffs involving

economics without explicitly embedding epidemiology models such as Hall et al. (2020) and

Budish (2020).

The remainder of this paper is organized as follows. Section 2 describes the setup. Section

3 derives the dynamics of an epidemic and the lockdown necessary to keep it at a level that

respects the capacity constraint. Section 4 provides a discussion of possible and natural

extensions of the baseline model we study, which serves as a proof of concept. Section 5

concludes the paper.

2 Setup

Consider a basic susceptible-infectious-recovered (SIR) model with a constant population of

size N . This is a classic model in epidemiology (see, e.g., Murray, 2002, p.320), in which the

population is divided into three compartments consisting of susceptible individuals, infected

individuals and recovered individuals, respectively denoted by S(t), I(t) and R(t) at time t.

Note that because of the assumption of a constant population of size N , for all t ≥ 0, we

have

S(t) + I(t) +R(t) = N:

We let N1 = S(0), N2 = I(0) and N3 = R(0) and assume that only two types of transitions

are possible: susceptible individuals can become infected and infected individuals recover.

(As is standard, “recovered” simply means the individuals are no longer infectious, which

occurs either because they gained immunity or died following infection.) We let � denote the

average number of contacts per person per time and assume that we have a well-mixed or

homogeneous population so that I(t)=N is the fraction of contact occurrences that involve

an infectious individual. The rate of transition between the susceptible compartment and

the infectious compartment is thus given by �I(t)=N .

We denote by ‘ ∈ [0; 1] the severity of the lockdown, with ‘ = 0 meaning no lockdown

and ‘ = 1 meaning complete lockdown. We assume that ‘ is the choice variable of the

policymaker, and with regards to the epidemic, its impact is that it affects the transmission

rate � as follows:

�(‘) = �0 + (1− ‘)�1;

where �0 ≥ 0 is a fixed component of the transmission rate, �1 > 0 is a constant, and �(‘)

makes the dependence of � on ‘ explicit.
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We further assume that individuals recover at rate .5 In SIR models, the parameter

R0 = �= plays an important role in governing the dynamics of an epidemic. In this simple

version whenever R0N1 > 1 the number of infected individuals will increase from time t = 0,

resulting in an epidemic. If R0N1 < 1 then the number of infected individuals will decrease

from time t = 0 and an epidemic does not occur (alternatively, we can think of the “peak”

of the epidemic as occurring at time t = 0).

The proportion � ∈ [0; 1] of those who are infected need treatment, so that, given I(t)

and � , the number of people requiring treatment at time t is

T (t) = �I(t):

Letting K > 0 denote the maximum capacity of the health care system to treat COVID-

19 patients without reducing the care given to other patients in need, the constraint for

managing the epidemic is, for all t ≥ 0,

T (t) ≤ K: (1)

In Section 3.4, we augment the epidemiology model by an economic production function

to analyze tradeoffs involving economics. Specifically, we assume that GDP, denoted Y , is

produced using labor L according to the production function Y = L�, where � ∈ (0; 1) is a

parameter that measures labor’s productivity, which can be calibrated using labor’s income

share in national accounts data.6 Letting L0 ≥ 0 denote the amount of labor that is not

affected by the lockdown variable ‘, the amount of labor that is productive given ‘ is

L(‘) = L0 + (1− ‘)L1;

where L1 is the part of the labor that is affected by the lockdown variable ‘. It follows that

L(0) is the pre-lockdown labor supply.

3 Managing an epidemic

We now analyze the dynamics of an epidemic and then derive the minimal lockdown policy

‘K necessary to satisfy the constraint K at all times.

5For example, if D is the duration of infection then the rate of recovery is given by  = 1=D.
6This corresponds to assuming a Cobb-Douglas production function with all input factors other than

labor being fixed for the duration of the disease; see, for example, Jehle and Reny (2011).
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3.1 Dynamics of an epidemic

The dynamics of an epidemic in our simple SIR model are governed by the following system

of non-linear differential equations:

dS(t)

dt
= −�I(t)S(t)

N
;

dI(t)

dt
=
�I(t)S(t)

N
− I(t) and

dR(t)

dt
= I(t);

with initial conditions S(0) = N1, I(0) = N2 and R(0) = N3. Harko et al. (2014) provided

an analytic solution to this system of equations by parameterizing time t by a parameter u.

In particular, introducing the integration constants

S0 = N1e
βN3
γ ; u0 = e�βN3

γ ; and C1 = −�N

we have

t(u) =

Z u

u0

1

�(C1 −  log(�) + S0��)
d�; I(u) = N − S0u+

 log(u)

�
and R(u) = − log(u)

�
:

Notice that when u = u0 we have t = 0 and that u decreases as t increases.7

The basic dynamics of an epidemic are as follows. As susceptible individuals become

infected and then recover, the stock of susceptible individuals decreases over time and the

stock of recovered individuals increases over time. The number of infected individuals ini-

tially increases before reaching an epidemic peak and then gradually decreasing. The number

of infected individuals stops increasing once the population of susceptible individuals is suffi-

ciently small. An example of a typical epidemic path is shown in Figure 1. Note that unless

stated otherwise all figures are drawn for the parameterization N1 = 0:999, N2 = 0:001,

N3 = 0, and  = 1=18; Figure 1 assumes � = 3:1=18.8

Assuming R0N1 = �N1= > 1 (so that the peak of the epidemic does not occur at t = 0),

the maximal number of infected individuals I�(�) during the epidemic is characterized by

I�(�) = N − S0umax +
 log(umax)

�
;

7In the limit as t→∞ we have u→ −W
�
−e

C1
γ �S0=

�
=(�S0), where W is the product log function.

8Here, we normalize the size of the population to 1 and assume that initially 0:1% of the population is
infected. Following Wang et al. (2020), we take  = 1=18, which reflects an average disease duration of 18
days (and so the appropriate interpretation of the time scale t is then also in days). We also set � = �0

so that R0 = 3:1, which is in line with estimates from Wuhan, China prior to the introduction of strict
lockdown measures.
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Figure 1: The evolution of a typical epidemic.

where

umax =


�S 0
:

Notice that we have

d I � (� )
d �

= �
 log

�


�N 1

�

� 2
> 0; (2)

where the inequality follows from the fact that log(= (�N 1)) < 0 since by assumption

= (�N 1) < 1.

3.2 Binding, slack or violated capacity constraints

Notice that the parameters� 0, � 1,  and � , as well as the initial conditions, impose restric-

tions on the lower feasible bound forK . Speci�cally, denote byI ` (t) the number of infectious

at time t given policy ` 2 [0; 1], by

I �
` = I � (� (`))

the maximum number of infected individuals giveǹ , and by

T �
` = � I �

`

the maximum number of people needing treatment per time given policỳ. From (2) we

have that I �
` and T �

` are continuously decreasing iǹ since� (`) is decreasing iǹ . From this

and continuity follows that K is feasible if and only if

K 2 [T �
1 ; T �

0 ]: (3)
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If K < T �
1 , then the capacity constraint is so tight that it can never be satis�ed at the peak

of the endemic, not even with the most severe lockdown policy. IfK > T �
0 , then no lockdown

is required to satisfy the constraint.

Conversely, for anyK satisfying (3) there is aminimal lockdown policy, denoted`K , that

satis�es the constraint that the number of individuals requiring treatment at time t never

exceedsK . Formally,

`K := min f ` j ` 2 [0; 1] and K � T �
` g:

BecauseT �
` is a decreasing functions of̀, it follows that `K is a decreasing function ofK .

Intuitively, as the capacity constraint K increases, the severity of the required lockdown

decreases.

As for policy implications, this means that, all else equal, states or countries with larger

capacities can a�ord less stringent lockdowns. For a given lockdown policy the transmission

rate parameter � can also vary substantively between states and countries as the value of

this parameter varies with factors such as population density and household composition.

Since the maximum number of patients requiring treatment is given by� I � (� ) and I � (� )

is increasing in� (see (2)), it follows that, all else equal, states or countries with larger

transmission rates require more stringent lockdowns. Formally, compare two regions, each

with capacity K , with transmission rates parameterized by (� 0; � 1) and (�̂ 0; �̂ 1) satisfying

�̂ i � � i for i = 0; 1, where at least one of these inequalities is strict. Denoting the respective

minimal lockdown policies by`K and ^̀
K , we then have

`K < ^̀
K :

In other words, regions with lower transmission rates can a�ord slacker lockdown policies as

is illustrated in Panel (a) of Figure 2. This �gure uses the same parameters values as Figure

1 but with ( � 0; � 1) = (0 :5=18; 2:6=18) and (�̂ 0; �̂ 1) = (0 :6=18; 2:6=18).

3.3 The relationship between lockdown and capacity

We now look in slightly more detail at the relationship betweenK and `K . Panel (b) of

Figure 2 plots this relationship, assuming� (`) = 0 :5 + 2:6 (1 � `) and � = 0:11.9 As

9Following Wang et al. (2020), we useR0 = 3 :1 with no lockdown and R0 = 0 :5 under the strictest possible
lockdown. The �rst of these R0 values is an estimate for Wuhan, China prior to any policy interventions
by the Chinese government. The second of theseR0 values is an estimate for Wuhan, China under the
strictest lockdown measures implemented by the government. We use� = 0 :11, which is consistent with
data from New York which showed that around 11% of con�rmed coronavirus patients were hospitalized at
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(a) A range of  values (b) A range of � values

Figure 2: Panel (a) illustrates that a higher schedule of� values necessitates a more severe
lockdown for a givenK value. Panel (b) illustrates the relationship betweeǹK and K for
a range ofN2 values. As was shown analytically, for a givenN2 value, the severity of the
lockdown`K decreases as the capacityK of the healthcare system increases. This �gure also
shows that a more severe lockdown is required if a higher proportionN2 of the population
is initially infected.

before we setN3 = 0 and  = 1=18 but we now create plots for three di�erent values ofN2:

N2 = 0:001 (in which caseN1 = 0:999), N2 = 0:02 (in which caseN1 = 0:98) and N1 = 0:04

(in which caseN1 = 0:96). Panel (b) of Figure 2 shows that the lockdown policỳ needed to

achieve a givenK increases in the proportion of the population that is initially infected. This

�gure also shows how the proportion of the population that requires treatment at the height

of the pandemic, for a given lockdown policỳ, increases in the proportion of individuals

N2 that is initially infected. Consequently, for a given capK , a more severe lockdown is

required asN2 increases. This result highlights the high cost of a delayed policy response.10

Figure 3 provides some additional comparative statics showing how the severity of the

the peak in hospitalizations (Feuer, 2020). Note that� is not the rate of hospitalization (i.e. the proportion
of coronavirus patients that are hospitalized at some point over the course of their illness) but rather the
proportion of coronavirus patients that are hospitalized at any given point in time. An alternative approach
would be to include a separate compartment in the model for hospitalizations, the main advantage being
that this would produce a time-lag between the peak in the number of infected individuals and the peak in
the number of hospitalized individuals (which is consistent with what we observe in data). We ensure that
the binding constraint on the healthcare system is not violated due to this time-lag e�ect by calibrating the
model using the proportion of the population that is hospitalized at the peak in hospitalizations.

10For example, when San Francisco issued a shelter-in-place order on March 16, 2020 its number of per
capita con�rmed coronavirus cases was comparable to that of New York City. By the time New York City
was subject to a shelter-in-place order on March 23, 2020 the number of per capita con�rmed coronavirus
cases was greater than that of San Francisco by roughly an order of magnitude.
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