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Abstract

Clock auctions have a number of properties that make them attractive for practical

purposes. They are weakly group strategy-proof, make bidding truthfully an obviously

dominant strategy, and preserve trading agents’ privacy. However, optimal reserve

prices and stopping rules depend on the details of underlying distributions, and so

clock auctions have proved challenging to implement in a prior-free, asymptotically

optimal way. In this paper, we develop a prior-free clock auction that is asymptotically

optimal by exploiting a relationship between hazard rates and the spacings between

order statistics. Extensions permit price discrimination among heterogeneous groups,

minimum revenue thresholds, and quantity caps.
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1 Introduction

Clock auctions have a number of properties that make them attractive for practical purposes.

They are weakly group strategy-proof, preserve the privacy of trading agents, endow single-

unit traders with obviously dominant strategies, and limit the information that agents and

the designer must acquire prior to the auction.1 Privacy preservation protects traders from

hold-up by the designer and the designer from the (often political) risk of regret.2 By

endowing agents with dominant strategies, clock auctions exhibit equilibrium behavior that

does not depend on common knowledge or higher-order beliefs. Therefore, they satisfy

popular robustness requirements.

However, clock auctions with optimally chosen reserve prices and stopping rules depend

on the fine details of the environment and so are subject to what has become known as

the Wilson critique (Wilson, 1987). Although there is a large economics and computer

science literature on asymptotically optimal, prior-free mechanisms, to date none of these

mechanisms is implementable as a clock auction. This creates a tension between prior-free,

asymptotically optimal mechanisms that are not clock implementable and prior-free clock

auctions that are not asymptotically optimal, seemingly leaving designers with the tough

choice between one or the other.3

The tension is easily understood. In general, whether it is optimal for an agent to trade

depends not only on his virtual type, but also on his ranking relative to agents on his side of

the market, which is determined using the bids of the other players on his side of the market.

This is the case in two-sided environments when the designer acts as an intermediary and

in one-sided auctions when the designer has a capacity constraint or otherwise increasing

marginal costs. Even if the distribution that is used to gauge an agent’s own virtual type

does not depend on that agent’s report, using his report to determine other agents’ virtual

types and their rankings relative to his may indirectly introduce a means to manipulate the

mechanism.4

1The notion of obviously dominant strategies is defined by Li (2017). Li also shows that clock auctions
have an equilibrium in obviously dominant strategies and that this implies weak group strategy-proofness.
The point about limited information acquisition by traders is due to Milgrom and Segal (forth.).

2Lucking-Reiley (2000) discusses hold-up by dealers of collectable stamps using second-price auctions
and how truthful bidding was no longer a dominant strategy. Ex post regret was an issue following New
Zealand’s 1990 radio spectrum auction, which used a direct mechanism that revealed to the public the
amount of money left on the table (McMillan, 1994; Milgrom, 2004).

3Revenue extraction is often an important and sometimes the only design objective. For the pivotal role
revenue considerations played in the U.S. Congress’ decision to legislate the FCC to use auctions to allocate
radio spectrum licenses, see for example Loertscher et al. (2015). Similarly, the question how much revenue
the U.S. government should extract from the “incentive auction” was the subject of at times controversial
debates. Even in economic theory, revenue plays an important role: The impossibility results of Vickrey
(1961) and Myerson and Satterthwaite (1983) and their generalizations, such as those by Delacrétaz et al.
(2019), arise because the designer faces the constraint that revenue must not be negative.

4Goldberg et al. (2001) and Baliga and Vohra (2003) circumvent the problem by splitting the market into
two sub-markets and using the estimates from one sub-market to determine the mechanism to be applied
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In this paper, we show how to reconcile prior-free clock auctions and asymptotic opti-

mality. We exploit the insight that Myerson’s theoretical construct of virtual types is tightly

connected to the order statistics of types drawn from the same distribution and the spacings

(distances) between them and the fact that, under the regularity assumption that virtual

types are increasing, no knowledge of the inframarginal virtual types is required to determine

the Bayesian optimal allocation.5 Assuming agents play their obviously dominant strategies

and, on each side of the market, draw their types from identical distributions, the spacings

between nontrading agents’ types are given by the spacings between their exit prices and are,

thus, observable. As we show, these observations and assumptions are enough for a uniformly

consistent estimate of the virtual types of the marginal active buyer and seller. Because the

estimates use only the reports of agents who do not trade, the privacy of the agents who

trade is preserved. What is more, privacy preservation for trading agents guarantees in-

centive compatibility because, for example, buyers with higher values cannot influence the

estimates and hence the ranks of lower valuing buyers, conditional on being active. Because

no information about inframarginal types is required and because estimates are uniformly

consistent, a clock auction that stops at the earliest point at which the estimated virtual

type of the marginal active buyer exceeds the estimated virtual cost of the marginal active

seller is asymptotically optimal.

To the best of our knowledge, ours is the first paper to develop an asymptotically op-

timal clock auction for a general setting in which, if distributions were known, the optimal

mechanisms in the tradition of Myerson (1981) would be well understood. Furthermore, the

structure of the clock auction is essentially pinned down if one requires it to be sequentially

consistent in that, similar to Akbarpour and Li’s (2018) notion of credible mechanisms, there

is no commitment problem for the auctioneer in the dynamic implementation. By extend-

ing our setup to have identifiable groups of buyers and groups of sellers, where agents are

homogenous within groups but heterogeneous across groups, we can allow for price discrim-

ination across groups, revenue thresholds, group-specific caps, and group-specific favoritism.

This paper contributes to the literature on clock auctions. Beginning with Milgrom

and Weber (1982), with subsequent contributions by McAfee (1992), Kagel (1995), Lopomo

(1998, 2000), Ausubel (2004, 2006), Milgrom and Segal (forth.), and Li (2017), this literature

has identified advantages of dynamic implementation over direct mechanisms in a variety of

in the other. For the special case of constant marginal cost, Segal (2003) observes that one can use the
empirical distribution based on other agents’ reports without having to rely on estimates of the “empirical
density” to determine whether a given buyer should trade.

5The inframarginal agents when there are k traders are the k − 1 most efficient traders. Because clock
auctions allocate the quantity traded to the most efficient traders, Bayesian optimality with finitely many
agents cannot be implemented via a clock auction when virtual types are not monotone because optimality
in that setting requires ironing (and hence an inefficient allocation with positive probability). Nevertheless,
as we show, prior-free clock implementation of the Bayesian optimal mechanism is possible asymptotically
even when virtual types are not monotone, provided price posting is Bayesian optimal in the large and there
is a unique local maximum under price posting.
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setups.6 In particular, our paper builds on the properties of clock auctions identified by

Milgrom and Segal (forth.) and on design features first introduced by McAfee (1992).7

Motivated by Wilson (1987), we develop prior-free clock auctions that are asymptotically

optimal in the sense that, in the large, they implement the optimal mechanism derived by

Myerson (1981).8 We do so both for one-sided setups and for two-sided exchanges such as

Myerson and Satterthwaite (1983), Gresik and Satterthwaite (1989), and Williams (1999).

For a two-sided setting with multi-unit traders, Loertscher and Mezzetti (2018) develop

a prior-free incentive-compatible clock auction in which the role for estimation is to gauge

market demand and supply for the purpose of allocating efficiently without running a deficit.9

In the literature on asymptotically optimal, prior-free mechanisms, the two most im-

portant precursors to the current paper are Segal (2003) and Baliga and Vohra (2003).10

Segal derives an asymptotically Bayesian optimal mechanism for one-sided setups when the

designer is uncertain about the distribution of types but has a prior belief regarding the

distribution. Baliga and Vohra (2003) construct dominant strategy prior-free mechanisms

for one-sided and two-sided setups and show that in the limit with infinitely many traders,

these mechanisms generate the same revenue as the Bayesian optimal mechanisms. Baliga

and Vohra divide agents on each side of the market randomly into two groups and use reports

from one group to estimate the virtual type functions for the other group.

Dominant strategy prior-free mechanisms have also received attention in the computer

science literature. That literature analyzes mechanisms that use reports from a sample of

agents to infer the distribution of types for other agents, referred to as random-sampling

mechanisms.11 Whereas the analysis of this type of mechanism in Baliga and Vohra (2003)

focuses on profit maximization for the designer, the literature on Algorithmic Game Theory

focuses on whether the mechanisms have good worst-case performance relative to benchmarks

6Although both the English auction and the second-price auction make bidding truthfully a dominant
strategy, in laboratory settings subjects are consistently more likely to play their dominant strategy in
English auctions than in second-price auctions (Kagel, 1995), suggesting that the open format of the English
auction facilitates discovery of the dominant strategies.

7To the extent that clock auctions raise concerns, those relate to combinatorial clock auctions (see Levin
and Skrzypacz, 2016) and so are not relevant here.

8Hagerty and Rogerson (1987) provide an additional, related motivation for detail-free mechanisms:
Environments are often subject to shocks while institutions that govern trade are longer-term in nature and
must therefore be robust with respect to the details of changing environments.

9Because efficiency is a distribution-free concept, statistical properties in the setting of Loertscher and
Mezzetti (2018) only matter for convergence, which allows them to depart from the independence assumption.

10There is also a vast literature on estimation in auctions using kernel density estimators; see Athey and
Haile (2007) and Guerre et al. (2000) and the references therein. This literature is related because objects of
interest here and there are the distributions from which bidders draw their types. Our k-th nearest neighbor
estimator is a kernel density estimator based on the uniform kernel. In clock auctions, the estimates of
interest are at the bound of the observed data, i.e., at a single point. For estimating densities at a single
point, there appears to be no advantage of kernel estimates over nearest neighbor estimates (Silverman,
1986, pp. 20 and 97).

11These mechanisms are referred to as “random sampling mechanisms” in, e.g., Goldberg et al. (2001)
and Goldberg et al. (2006), but as “adaptive mechanisms” in Baliga and Vohra (2003).
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based on prior-free mechanisms that approximate Bayesian optimality but are not incentive

compatible.12 For example, Goldberg et al. (2001) and Dhangwatnotai et al. (2015) focus

on the worst-case performance one-sided auctions for a good with unlimited supply, while

Deshmukh et al. (2002) consider two-sided mechanisms.13 None of these random-sampling

mechanisms can be implemented as a clock auction.

This paper also relates to the large literature on micro-foundations for Walrasian equilib-

rium, whose modern guise goes back to Arrow (1959), Vickrey (1961), and Hurwicz (1973).

How can a market maker infer the data necessary to clear the market without violating

agents’ incentive and participation constraints at no cost to himself? The short answer is

that he cannot. However, one way of interpreting the results in McAfee (1992), Rustichini

et al. (1994), Cripps and Swinkels (2006), and Satterthwaite et al. (2015) is that there are

practical mechanisms that approximate full efficiency quickly as the economy grows. We

show that the market maker’s objective can be maximized, asymptotically, even if the objec-

tive is to maximize revenue or a convex combination of revenue and social surplus, without

any prior knowledge or assumptions about distributions beyond mild regularity conditions

and independence.

The remainder of this paper is structured as follows. Section 2 introduces the setup,

Bayesian optimality, and clock auctions. Among other things, it decribes the Bayesian

optimal mechanism and shows that in a two-sided setup, the Bayesian optimal mechanism

is not clock implementable. Section 3 shows by construction that a prior-free clock auction

exists that is asymptotically optimal. In addition, we show that the structure of the prior-

free clock auction can be pinned down by a notion of sequential consistency, and we provide

criteria for determining the details of the required estimators. Section 4 discusses extensions,

and Section 5 concludes.

2 Setup

We study settings in which the demand side is characterized by a vector of marginal valu-

ations v of dimension n and the supply side by a vector of marginal costs c of dimension

m. Letting v(k) and c[k] denote, respectively, the k-th highest and k-th lowest elements of v

and c, the efficient quantity traded is the largest integer k such that v(k) ≥ c[k], which is well

defined using the conventions that v(0) ≡ ∞, v(n+1) ≡ −∞, c[0] ≡ −∞, and c[m+1] ≡ ∞. All

trade occurs via a monopoly market maker, who is a risk-neutral designer without private

information.

To account for private information, we assume that agents on at least one side of the

12Devanur et al. (2015) provide a formal definition of “approximate” in this sense.
13Dütting et al. (2017) analyze two-sided mechanisms that can be implemented as clock auctions, but do

not consider estimation.
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market are privately informed about their types. In other words, we study setups with one-

sided private information pertaining to buyers, one-sided private information pertaining to

sellers, and two-sided private information.

We assume that all buyers draw their types from the same distribution F and that all

sellers draw their types from the same distribution G. In the online appendix we extend our

results to allow for heterogeneity across groups of buyers and heterogeneity across groups of

sellers.14

When considering prior-free mechanisms, we assume that each agent with private in-

formation is privately informed about his type, but the types and distributions that they

are drawn from are unknown to the mechanism designer and to the agents. Keeping fixed

the mechanism, equilibrium behavior would not be affected if the agents knew the distri-

butions because the mechanism endows them with dominant strategies; however, depending

on assumptions about the informational structure, alternative mechanisms, such as those

developed by Crémer and McLean (1985, 1988) could be optimal.15 We assume that the

designer only knows that buyers and sellers draw their types independently from the same

distributions and that the Bayesian design problem satisfies certain other conditions that we

spell out below. We also assume that the designer knows upper and lower bounds for the

types (not necessarily tight ones), which allows the designer to start the clock auction at

prices that guarantee that all agents are active irrespective of their types.

For prior-free mechanisms, dominant strategy incentive compatibility seems like the nat-

ural notion of incentive compatibility. Moreover, it is without loss of generality when there

is no restriction on the set of admissible priors.16 Individual rationality is most naturally

required to be satisfied ex post.17 These are therefore the notions that we focus on going

forward.

14Specifically, in the extension we assume that all buyers within a group draw their values from the same
distribution and that all sellers within a group draw their costs from the same distribution, but we allow the
distributions to vary across groups. This extension allows for price discrimination across groups as well as
the implementation of revenue thresholds, group-specific caps, and group-specific favoritism.

15However, Crémer-McLean mechanisms are not prior-free mechanisms as defined here. While the allo-
cation rule of the full-surplus extracting mechanism is ex post efficient and thus independent of the prior,
the ex post transfers vary with distributions.

16To see this, recall first from Bergemann and Morris (2005) that for private values environments like ours,
dominant strategy implementation is equivalent to ex post implementation. Therefore, Bayesian incentive
compatibility is the only alternative notion of incentive compatibility. For the purpose of reaching a contra-
diction, assume then that a mechanism satisfies Bayesian incentive compatibility but fails to be dominant
strategy incentive compatible. Because the mechanism is prior-free, it must be Bayesian incentive compatible
for any admissible prior, including priors with mass one at the type profile(s) for which the mechanism fails
to satisfy dominant strategy incentive compatibility. But for such priors, Bayesian incentive compatibility
reduces to dominant strategy incentive compatibility, which is the desired contradiction.

17In Bayesian mechanism design settings with private values, there is an equivalence between the Bayesian
and dominant strategy notions of incentive compatibility and of interim and ex post individual rationality;
see, for example, Manelli and Vincent (2010) and the generalization by Gershkov et al. (2013).
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2.1 Benchmark Bayesian optimal mechanisms

We now describe the Bayesian optimal mechanisms for the informational setups that we

consider as well as regularity assumptions.

Bayesian optimality with one-sided private information pertaining to buyers

For the setup with one-sided private information pertaining to buyers, c[1], ..., c[m] define the

commonly known marginal cost curve of the designer, and there are n buyers who have unit

demands and draw their valuations independently from the continuously differentiable dis-

tribution function F with support [v, v] and positive density f everywhere on the support.18

A buyer’s payoff is equal to his value minus the price he pays if he trades and zero otherwise.

It is well known that under the assumptions that v ≤ c[1] < v and that the virtual valuation

function

Φ(v) ≡ v − 1− F (v)

f(v)

is increasing, the solution to the designer’s profit maximization problem, which is subject to

buyers’ incentive compatibility and individual rationality constraints, has an allocation rule

that trades the quantity given by the largest index q such that Φ(v(q)) ≥ c[q].
19 The q buyers

with the highest values trade and, in the dominant strategy implementation, pay the price

pB = max{v(q+1),Φ
−1(c[q])}.20 This is a standard sales auction with a reserve that depends

on the quantity traded.

Bayesian optimality with one-sided private information pertaining to sellers

Analogously, for one-sided private information pertaining to sellers, we assume that sellers

have unit capacities and draw their privately known costs independently from a continuously

differentiable distribution G with support [c, c] and positive density g on the support. A

seller’s payoff is equal to the payment she receives minus her cost if she trades and zero

otherwise. If the designer’s marginal values v(1), ..., v(n) are commonly known, c ≥ v(1) > c,

and the virtual cost function

Γ(c) ≡ c+
G(c)

g(c)

18We assume continuously differentiable distributions instead of merely continuous distributions because
our asymptotic results rely on the continuity of the inverses of the virtual type functions, which is guaranteed
if the densities are continuous.

19After accounting for incentive compatibility and individual rationality constraints in a direct mechanism,
the designer’s problem is to choose a feasible allocation rule to maximize Ev|F,...,F [

∑n
i=1 Φ(vi)qi(v, c) −∑m

j=1 cjqj(v, c)], where qi is the probability that buyer i receives a unit and qj is probability that the j-th

unit is produced, with feasibility meaning that
∑n
i=1 qi(v, c) ≤

∑m
j=1 qj(v, c).

20In case multiple buyers have the same value v(q), that is, when v(q) = v(q+i) for i = 1, . . . , the mechanism
needs to ration the buyers with this value. Any arbitrary tie-breaking rule will do without distorting
incentives as the agent who wins the tie-break gets a payoff of 0 just like the agents who lose the tie-break.
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is increasing, then this is a standard procurement auction in which the optimal quantity

traded is the largest index q such that v(q) ≥ Γ(c[q]).
21 The q sellers with the lowest costs

trade and, in the dominant strategy implementation, are paid pS = min{c[q+1],Γ
−1(v(q))}.22

Bayesian optimality with two-sided private information

For two-sided private information, we let the set of (privately informed) agents be N ∪M,

where N is the set of buyers with unit demands, whose cardinality is n, and M with

cardinality m is the set of sellers with unit capacities. As above, buyers and sellers have

quasi-linear payoffs and outside options of value zero. Our problem is most interesting when,

under the optimal Bayesian mechanism, full trade is sometimes but not always optimal, with

full trade meaning that the quantity traded is min{n,m}. A simple condition that guarantees

this for the setting with two-sided private information is

c ≥ v > c ≥ v. (1)

We refer to condition (1) and its one-sided analogues, v ≤ c[1] < v and c ≥ v(1) > c, as

no-full trade conditions, and throughout the paper we assume that the relevant no-full trade

condition holds. Under this condition, assuming that Φ and Γ are increasing functions, the

Bayesian optimal mechanism in the two-sided setting is characterized by the allocation rule

that given (v, c) trades the quantity q that is the largest index such that Φ(v(q)) ≥ Γ(c[q]).
23

As in the one-sided setups, the number q is unique almost surely because ties among agents’

types are a probability zero event. The q buyers with the highest values and the q sellers

with the lowest costs trade. In the dominant strategy implementation, trading buyers pay

pB = max{v(q+1),Φ
−1(Γ(c[q]))} and trading sellers are paid pS = min{c[q+1],Γ

−1(Φ(v(q)))},
where ties among marginal traders can be broken arbitrarily.

Asymptotic optimality

Now that we have identified the Bayesian optimal outcome, we can define what we mean

for a mechanism to be asymptotically optimal. In the tradition of Gresik and Satterthwaite

(1989), we derive asymptotic results assuming independent private values by considering

η-fold replicas of the economy, which ensures that the numbers of buyers and sellers go to

21To see this, apply standard arguments to conclude that, after accounting for incentive compatibility
and individual rationality constraints, the designer’s problem in a direct mechanism is to choose a feasible
allocation rule to maximize Ec|G,...,G[

∑n
i=1 viqi(v, c)−

∑m
j=1 Γ(cj)qj(v, c)].

22Like with buyers, in case multiple sellers have the same cost c[q], an arbitrary tie-breaking rule can be
applied without distorting incentives.

23 In a direct incentive compatible and individual rational mechanism, standard arguments
imply that the designer’s problem reduces to choosing a feasible allocation rule to maximize
Ev,c|F,...,F,G,...,G[

∑n
i=1 Φ(vi)qi(v, c)−

∑m
j=1 Γ(cj)qj(v, c)].
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infinity in fixed proportion. Given an initial set of agents, an η-fold replica has a set of

agents equal to the union of η instances of the initial set of agents, with the corresponding

type space for each replica, and beliefs defined over a single replica of the type space. We say

that an incentive compatible, individually rational mechanism defined for an η-fold replica

is asymptotically optimal if the ratio of the designer’s objective in the mechanism to the

designer’s objective in the Bayesian optimal mechanism converges to 1 in probability as the

number of replicas goes to infinity.

Regularity assumptions

The Bayesian optimal mechanism described above requires the assumption of increasing

virtual type functions, which is what Myerson (1981) refers to as the regular case. This

assumption ensures that point-by-point maximization permits incentive compatible imple-

mentation because it implies that more efficient types—buyers with higher values and sellers

with lower costs—are more likely to trade. If, for a two-sided setting, Φ is not increasing

in the neighborhood of some v′ with Φ(v′) > c and/or Γ is not increasing in the neighbor-

hood of some c′ with Γ(c′) < v,24 then the Bayesian optimal mechanism differs from the

one described above. For finite numbers of buyers and sellers, there is ironing and random

rationing with positive probability.

For our purposes, we can relax the usual regularity condition considerably. To illustrate,

consider a two-sided setup and confine attention, temporarily, to posted-price mechanisms.

A necessary condition for the posted prices pB and pS to be profit maximizing among all

prices (p̂B, p̂S) ∈ [v, v] × [c, c] in the limit as we replicate an initial set of n buyers and m

sellers, i.e., “in the large,” is that the prices satisfy

Φ(pB) = Γ(pS) and n(1− F (pB)) = mG(pS). (2)

If the solution to (2) is unique and if the Bayesian optimal mechanism in the large is a

posted-price mechanism (both of which are, for example, the case when the virtual type

functions are increasing), then the mechanisms described above are Bayesian optimal in the

large even when they are not Bayesian optimal in the small (see Figure 1 for an example).25

Correspondingly, our results for asymptotically optimal prior-free mechanisms require

only the assumption that there is a unique pair of prices satisfying (2) and that the Bayesian

optimal mechanism in the large is a posted-price mechanism. In what follows, we maintain

this assumption.

The tight connection between the Bayesian optimality of posted-price mechanisms in the

24When private information pertains only to buyers, respectively sellers, the conditions have to be replaced
by Φ(v′) > c[1] and Γ(c′) < v(1).

25When private information only pertains to buyers, respectively sellers, the optimal posted prices are
obtained from (2) by replacing Γ and Φ by the identity function.
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large and the asymptotic optimality of our prior-free clock auction is not surprising; afterall,

a clock auction generates prices that trading agents take as given and that are, in that sense,

posted to them. The requirement that the prices pB and pS satisfying (2) be unique relates

to the fact that, as we shall see, our clock auction stops at the first pB and pS such that (2)

holds, with Φ and Γ replaced by prior-free estimates.

As an illustration, Figure 1 depicts a case in which, in the large with equal numbers

of buyers and sellers, the Bayesian optimum is implemented with posted prices pB and pS

such that the share q∗ of buyers and sellers trade, i.e., pB = F−1(1− q∗) and pS = G−1(q∗).

However, in the small, because of ironing, random rationing occurs with positive probability

and the mechanisms described above are not Bayesian optimal. Further, if the example

were adjusted so that the virtual cost function intersected the ironed portion of the virtual

value function, then the Bayesian optimal mechanism in the large would no longer be a

posted-price mechanism because some share of agents would have to be rationed.

q*
q

Φ(F-1(1-q))

ironed portion of Φ(F-1(1-q))

Γ(G-1(q))

Figure 1: Illustration of a setup with unique posted prices that are Bayesian optimal in the
large, but where ironing may be required in the small.

Generalized designer objective

The scope of the analysis can be further generalized by assuming that the designer wants to

maximize a Ramsey objective, that is, a weighted sum of expected profit and social surplus,26

with weight α ∈ [0, 1] on expected profit, subject to incentive compatibility and individual

rationality. The Bayesian optimal mechanism is then characterized by the same allocation

rules as derived above for the case of profit maximization, except that one has to replace the

virtual value and virtual cost functions by, respectively, the relevant weighted virtual type

26Social surplus is defined to be the sum of trading buyers’ values minus the sum of trading sellers’ costs.
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function Φα(v) and Γα(c) defined as

Φα(v) ≡ αΦ(v) + (1− α)v = v − α1− F (v)

f(v)
and Γα(c) ≡ αΓ(c) + (1− α)c = c+ α

G(c)

g(c)
.

By construction, for α = 0, the weighted virtual types correspond to true types, so that α = 0

is equivalent to ex post efficiency, and for α = 1, we have Φ(v) = Φ1(v) and Γ(c) = Γ1(c), so

that α = 1 corresponds to profit maximization.27 The payments in the dominant strategy

implementation are accordingly defined by replacing the virtual type functions Φ and Γ (and

their inverses) by Φα and Γα (and their inverses) in the formulas above. However, to allow

for the possibility that the virtual type functions are not increasing, and so not invertible,

we define the inverse virtual value function to select the lowest corresponding value and the

inverse virtual cost function to select the largest corresponding cost. Formally,

Φ−1α (x) ≡ min{v | Φα(v) ≥ x} and Γ−1α (x) ≡ max{c | Γα(c) ≤ x}.

Beyond generality, allowing the designer to have a Ramsey objective also highlights the

need for estimation because, as soon as α > 0, the optimal mechanism depends on distribu-

tional details.

2.2 Clock auctions

Next, we define clock auctions and discuss some of their key characteristics.

Definition of a clock auction

In a clock auction, active buyers and sellers choose whether to exit as the buyer clock price

increases and the seller clock price decreases, but agents who exit remain inactive thereafter.

When the auction ends, active agents trade, with active buyers paying the buyer clock price

and active sellers receiving the seller clock price.

To formally define a clock auction for our setup, we adapt the definition of a clock auction

27As noted by Bulow and Roberts (1989), when α = 1, the virtual values and virtual costs can be
interpreted, respectively, as a buyer’s marginal revenue and a seller’s marginal cost, treating the (change in
the) probability of trade as the (marginal change in) quantity. For α ∈ (0, 1), the weighted virtual values
and costs are convex combinations of the true and the virtual types, with weight α attached to the virtual
types. If the social shadow cost of taxation, which is a measure of the distortion associated with raising
revenue through taxes, is known to be some λ ≥ 0, then α can be chosen to implement the socially optimal
allocation by choosing α = λ/(1+λ) (see, e.g., Norman (2004) or Loertscher et al. (2015)). Alternatively, and
equivalently, if λ is the solution value of the Lagrange-mulitplier associated with the problem of maximizing
expected social surplus subject to the constraint of generating some minimum expected profit (and subject to
incentive compatibility and individual rationality constraints), the optimal allocation rule is as just described
with α = λ/(1 + λ).
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in Milgrom and Segal (forth.) to accommodate (without requiring) a two-sided setting.28 In

particular, to account for two sides, one needs to ensure that the numbers of active buyers

and of active sellers are the same at the time the procedure ends.

In our setup, a clock auction is a rule for determining state transitions for a state space Ω,

where the state ω keeps track of: the number of active buyers and sellers, the exit prices of the

nonactive buyers and sellers, the current buyer clock price, the current seller clock price, and

whether the auction has ended. State transitions are governed by three functions: a buyer

function φ : Ω→ R, which is increasing in the buyer clock price, a seller function γ : Ω→ R,

which is increasing in the seller clock price, and a target function τ : Ω→ R, which satisfies

τ(ω) ∈ [φ(ω), γ(ω)] whenever φ(ω) < γ(ω). Because these three functions determine the

state transitions, they also determine when the clock auction ends. As mentioned, once the

auction ends, the remaining active buyers buy at the buyer clock price, and the remaining

active sellers sell at the seller clock price. Because a clock auction is defined by the functions

φ, γ, and τ , we denote a clock auction by Cφ,γ,τ . We provide the full definition of a clock

auction for the two-sided setup (and the adaptation for a one-sided setup) in Appendix A.

In a clock auction, if there are unequal numbers of active buyers and sellers, then the

clock price on the long side is advanced until exits on that side of the market equalize the

number of active buyers and sellers. Once there are equal numbers of active buyers and

sellers, the buyer and seller functions are evaluated at the current state. The auction ends if

the state ω is such that the value of the buyer function is greater than or equal to the value

of the seller function, that is, φ(ω) ≥ γ(ω). If not, then the target function comes into play.

The value of the target function τ(ω), which when φ(ω) < γ(ω) is weakly between the

values of the buyer and seller functions, becomes a target for the buyer and seller functions

to achieve. Specifically, the buyer clock price is increased so as to increase the value of the

buyer function towards τ(ω), holding fixed the components of the state other than the buyer

clock price, and the seller clock price is decreased so as to decrease the value of the seller

function towards τ(ω), holding fixed the components of the state other than the seller clock

price.

If the target is reached on both the buyer side and the seller side with no exits (indicating

that the value of the buyer function would have exceeded the value of the seller function

following the next pair of exits), then the auction ends. Otherwise the auction continues,

moving the clock price on the long side to equalize the numbers of active buyers and sellers,

updating the state, and reevaluating the buyer and seller functions and the target function.

By construction, the clock auction ends, either with trade or because all agents have exited.

28Milgrom and Segal (forth.) define a (descending) clock auction for the one-sided setup. Their speci-
fication differs from ours in that it has individual-specific clocks and proceeds in discrete periods in which
prices from a finite set are offered to the agents. Their clock auction is defined in terms of a price mapping
from histories that are sequences of nested sets of active agents, where the price weakly decreases as agents
exit the active set.
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As an example, McAfee’s (1992) asymptotically efficient clock auction fits within our

definition of a clock auction. It corresponds to Cφ,γ,τ where, given a state ω with equal

numbers of buyers and sellers and clock prices pB and pS, the buyer and seller functions are

essentially identity functions, with φ(ω) = pB and γ(ω) = pS, and the target function gives

the midpoint between the two clock prices, τ(ω) = pB+pS

2
.

We assume that each buyer observes at least the buyer clock price and each seller observes

at least the seller clock price. Agents’ strategies are mappings from observed histories to exit

decisions. The truthful strategy of a buyer is to exit if and only if the buyer clock price is

greater than or equal to his value, and the truthful strategy of a seller is to exit if and only

if the seller clock price is less than or equal to her cost. Playing these truthful strategies is

dominant strategy incentive compatible.

Key properties of clock auctions

Clock auctions are well suited for practical implementation, and uniquely so on some dimen-

sions.

In our environment with single-unit demands and single-unit supplies, Li (2017) shows

that clock auctions, and only clock auctions, have obviously dominant strategies : the max-

imum payoff obtained by deviating from a dominant strategy at given price is never more

than the minimum payoff obtained by sticking to the dominant strategy. Specifically, if a

buyer exits before the buyer clock price reaches his value, his payoff is zero, and if a buyer

remains active after the buyer clock price reaches his value, his payoff is bounded above by

zero; however, under truthful bidding his payoff is bounded below by zero.

Clock auctions are also weakly group strategy-proof : for every profile of types, every

subset of agents, and every deviant strategy profile for these agents, at least one agent in

the subset has a weakly higher payoff from exiting when the clock price reaches the agent’s

type than from the deviant strategy profile.29 In addition, a clock auction is envy free in

the sense that in equilibrium no agent prefers the ex post allocation and price paid by or to

another agent to his own.30

These properties imply that clock auctions are robust with respect to the fine details of the

environment and that, in the absence of transfers, collusion among a subset of agents cannot

be strictly profitable for all of the colluding agents. Further, because endowing agents with

dominant strategies and having agents recognize their dominant strategies are two distinct

29On weak group strategy-proofness in a one-sided clock auction, see Li (2017) and Milgrom and Segal
(forth.). On the connection between individual and group strategy-proofness, see Barberà, Berga, and
Moreno (2014). Dütting et al. (2017) show weak group strategy-proofness holds for a “lookback composition”
of buyers and sellers that are ranked according to their types, which is a special case of the clock auctions
considered here in that it has no target prices.

30This property is not unique to the clock auction implementation. The dominant strategy implementa-
tions of the Bayesian optimal mechanisms derived above are also envy free.
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things in practice, the value of having obviously dominant strategies is a powerful argument

for the use of clock auctions and for focusing on direct mechanisms that can be implemented

via clock auctions. Indeed, this underlies the view expressed by Dasgupta and Maskin (2000)

that the development of appropriate dynamic counterparts to Vickrey auctions is a leading

topic for further research.

Achieving the Bayesian optimum in a clock auction

As we have described, clock auctions possess a number of desirable properties. Thus, it is of

interest when the Bayesian optimal mechanism can be implemented by a clock auction.

Proposition 1 In the setup with one-sided private information, the Bayesian optimal mech-

anism can be implemented by a clock auction if the virtual type function for the side with pri-

vate information is increasing. In the setup with two-sided private information, the Bayesian

optimal mechanism cannot be implemented by a clock auction with finite numbers of agents.

Proposition 1 summarizes the implication of the results of Milgrom and Segal (forth.) for

our setting.31 In one-sided settings, the Bayesian optimal mechanism can be defined based

only on the information held by the designer and information gleaned from nontrading agents,

and thus has a clock implementation.32 In contrast, in two-sided settings, the Bayesian

optimal mechanism relies on the private information of some trading agents—information

that is not available in clock auctions because they preserve the privacy of trading agents.

Thus, in two-sided settings, clock auctions do not always allow for the optimal quantity to

be traded and so are with some loss of generality.

3 Asymptotically optimal clock auctions

We now show the existence of a prior-free clock auction that is asymptotically optimal.

To have a clock auction, we require a buyer function, seller function, and target function,

which can only be estimated based on the types of agents that have exited and so do not

trade. The requirement of asymptotic optimality places constraints on how these functions

are estimated. In addition, we show that the structure of the prior-free clock auction can

31For settings like ours, Proposition 6 in Milgrom and Segal (forth.) shows that clock implementation
implies that agents are substitutes, while their Proposition 7 shows that clock implementation is possible
when agents are substitutes. Our Proposition 1 then follows once one notices that, with private information
pertaining to only one side of the market, the privately informed agents are substitutes for each other,
whereas when private information pertains to both sides, buyers and sellers are complements—the problem
is assignment representable, as defined by Delacrétaz et al. (2019), and so the complementarity of buyers
and sellers follows from Shapley (1962).

32For example, with private information only on the buyer side, the Bayesian optimal mechanism is
implemented by the clock auction Cφ,γ,τ where, given a state ω with buyer clock price pB and nA active
buyers, φ(ω) ≡ Φα(pB), γ(ω) ≡ c[nA+1], and τ(ω) ≡ c[nA].
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be pinned down by a notion of sequential consistency, which we define below. Within that

structure, we provide criteria for selecting the estimators to be used.

The exposition focuses on the case of two-sided private information. We discuss the

adjustments required for the case of one-sided private below.

3.1 Consistent estimation in clock auctions

Consider the task of finding consistent estimators of the weighted virtual type functions.

The following lemma, which relates the expected inverse hazard rates to expected spacings,

with the expectations being taken with respect to the true distributions, tells us that the

task of finding consistent estimators for the weighted virtual type functions boils down to

finding consistent estimators of the spacings between order statistics for the buyers’ values

and for the sellers’ costs.

Lemma 1 For all j ∈ {1, ..., n− 1},

jEv|F,...,F [v(j) − v(j+1)] = Ev|F,...,F

[
1− F (v(j))

f(v(j))

]
and for all j ∈ {1, ...,m− 1},

jEc|G,...,G[c[j+1] − c[j]] = Ec|G,...,G

[
G(c[j])

g(c[j])

]
.

Proof. See Appendix B.

Lemma 1 suggests that the weighted virtual value function, evaluated at the j-th highest

value, Φα(v(j)) = v(j)−α
1−F (v(j))

f(v(j))
, can be estimated by v(j)−αjσvj , where σvj is an estimate of

the expected spacing between v(j) and v(j+1). Similarly, it suggests that the weighted virtual

cost function, evaluated at the j-th lowest cost, Γα(c[j]) = c[j] +α
G(c[j])

g(c[j])
, can be estimated by

c[j] + αjσcj, where σcj is an estimate of the expected spacing between c[j+1] and c[j].

Pursuing this idea, we establish the asymptotic optimality of the prior-free clock auction

defined below. We ignore the target function for the moment because it only affects the

number of trades by at most one and so does not affect the asymptotic properties of the

mechanism. For any state ω with buyer clock price pB, seller clock price pS, and an equal

number j−1 of active buyers and sellers (which implies that the values v(j), ..., v(n) and costs

c[j], ..., c[m] are known from the exit prices of the inactive buyers and sellers and so can be

used for estimation), we define the buyer and seller functions as follows:

φ(ω) = pB − αjσvj and γ(ω) = pS + αjσcj, (3)
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where σvj and σcj are spacing estimators. Specifically, to achieve consistent estimators of

the expected spacing between values v(j−1) and v(j) and between the costs c[j] and c[j−1],

derived based on values v(j), ..., v(n) and costs c[j], ..., c[m], we use the average of rn and rm

spacings for nearby worse types. Given exit prices for buyers of v̂(n), ..., v̂(j) and exit prices for

sellers of ĉ[m], ..., ĉ[j] (equal to the corresponding true values and costs under agents’ dominant

strategies), we let σvj be the distance between v̂(j) and the rn-th nearest neighbor less than

σvj , divided by rn, and similarly for σcj. More precisely, to account for the possibility that rn

exceeds the number of available observations, we define the spacing estimators as follows:

σvj ≡

{
v̂(j)−v̂(j+min{rn,n−j})

min{rn,n−j} , if j < n
1

n+1
, otherwise

and σcj ≡

{
ĉ[j+min{rm,m−j}]−ĉ[j]

min{rm,m−j} , if j < m
1

m+1
, otherwise,

(4)

where rn (and correspondingly rm) satisfies

lim
n→∞

rn =∞ and lim
n→∞

rn
n

= 0 and lim
n→∞

lnn

rn
= 0. (5)

For example, the conditions in (5) are satisfied if rn = nx for x ∈ (0, 1).

As we now show, jσvj provides a uniformly consistent estimator for
1−F (v(j))

f(v(j))
and jσcj

provides a uniformly consistent estimator for
G(c[j])

g(c[j])
. Our use of jσvj as an estimate of

1−F (v(j))

f(v(j))

means that if we take the empirical cumulative distribution as the estimate of F (v(j)), then

we have jσvj = j/n

f̂(v(j))
, where f̂ is our implied density estimator and thus

f̂(v(j)) =
j
n

jσvj
=

1

nσvj
=

rn
n(v(j) − v(j+rn))

.

It follows that f̂(v(j)) is a one-sided Loftsgaarden-Quesenberry (1965) nearest neighbor esti-

mator for the density f when evaluated at v(j).

By the Glivenko-Cantelli theorem, the empirical cumulative distribution converges uni-

formly in probability to the actual cdf, and so the uniform convergence in probability of our

density estimator, as shown in Theorem 1, completes the proof. Although Theorem 1 has,

to our knowledge, not been shown previously, and its proof is fairly complex, the result is

at its heart a straightforward adaptation of the result of Moore and Henrichon (1969). The

theorem of Moore and Henrichon (1969), which draws on Loftsgaarden and Quesenberry

(1965), shows the uniform consistency of a two-sided nearest neighbor estimator. We adapt

the result and associated proof to the case of a one-sided nearest neighbor estimator that is

evaluated only at observed values.

Theorem 1 Given that F is continuously differentiable with positive density f on support
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[v, v] and that rn →∞, rn
n
→ 0, and lnn

rn
→ 0, it follows that as n→∞,

Pr

[
sup

`∈{1,...,n−rn}

∣∣∣∣`σv` − 1− F (v(`))

f(v(`))

∣∣∣∣ > ε

]
→ 0.

Analogously, given that G is continuously differentiable with positive density g on support

[c, c], it follows that as m→∞,

Pr

[
sup

`∈{1,...,m−rm}

∣∣∣∣`σc` − G(c[`])

g(c[`])

∣∣∣∣ > ε

]
→ 0.

Proof. See Appendix B.

To see the intuition for Theorem 1, note that by the definition of a density, our differen-

tiability assumptions, and the result that rnσ
v
` goes to zero with n, we have

Pr

(
sup

`∈{1,...,n−rn}

∣∣∣∣(F (v(`))− F (v(`) − rnσv` ))
rnσv`

− f(v(`))

∣∣∣∣ > ε

)
→ 0.

Also, as shown in the proof of Theorem 1,

Pr

(
sup

`∈{1,...,n−rn}

∣∣∣∣n(F (v(`))− F (v(`) − rnσv` ))
rn

− 1

∣∣∣∣ > ε

)
→ 0,

which holds because F (v(`))−F (v(`)− rnσv` ) has the same asymptotic properties as the sum

of rn out of n+ 1 exponential random variables with mean 1 divided by the sum of all n+ 1

exponential random variables. Loosely speaking, the sum of the rn exponential random

variables with mean 1 in the numerator “cancels” with the rn in the denominator, and the n

in the numerator “cancels” with the sum of n + 1 exponential random variables with mean

1 in the denominator. Thus, the ratio stays close to 1 for n sufficiently large. Putting these

together, we have

Pr

(
sup

`∈{1,...,n−rn}

∣∣∣∣rnn 1

rnσv`
− f(v(`))

∣∣∣∣ > ε

)
→ 0,

which completes the proof because rn
n

1
rnσv`

= 1
nσv`

= f̂(v(`)), which is our implied density

estimator.

Using Theorem 1, it follows that φ(v(j)) and γ(c[j]) as defined in (3) are uniformly con-

sistent estimators of Φα(v(j−1)) and Γα(c[j−1]), respectively, away from the boundary, i.e., for

a number of replicas η of an initial set of n buyers and m sellers such that rηn < ηn− j and

rηm < ηm − j. Because Φα(v) ≤ v < c ≤ Γα(c), it follows that as the number of replicas

16



of the economy goes to infinity, the Bayesian optimal number of trades is away from the

boundary in the sense of being less than min{ηn− rηn, ηm− rηm} with probability 1. Thus,

we have the following result:

Proposition 2 The prior-free clock auction defined by (3)–(5), combined with any target

function, is asymptotically optimal.

The adaptation of Proposition 2 to the case of one-sided private information is straight-

forward. In that case, the virtual type need not be estimated on the side of the market

without private information, and the target virtual type need not be estimated at all. For

example, with private information only on the buyer side, if the state ω has j − 1 active

buyers, then γ(ω) in the analysis above would be replaced simply by c[j].

The foundation for Proposition 2 is the result that as the number of agents goes to

infinity, the estimated virtual types defined by (3)–(5) are close to the theoretical virtual

types, so the “first time” (as agents exit a clock auction) that the estimated virtual types

cross, with the estimated virtual value exceeding the estimated virtual cost, cannot be too

far from the one and only time that the theoretical virtual types cross. Our estimated

virtual type functions differ from the “empirical” virtual type functions in that we use a

uniformly convergent (in probability) estimator for the density based on the average of

number of adjacent spacings between worse types rather than a local estimate of the rate

of change in the empirical distribution. Given that the local empirical estimate of g(c[j])

is
j+1
m
− j
m

c[j+1]−c[j]
, the local empirical virtual cost is Γ̂(c) ≡ c +

j
m
(c[j+1]−c[j])
j+1
m
− j
m

= c + j(c[j+1] − c[j]),

and, analogously, the local empirical virtual value is Φ̂(v) ≡ v− j(v(j) − v(j+1)). As Figure 2

illustrates, the high volatility of these local empirical virtual types renders them unhelpful

for developing an asymptotically optimal prior-free clock auction; however, a clock auction

based on estimates derived from the average of an appropriately chosen number of nearby

spacings is asymptotically optimal.

Figure 2 considers the case of revenue maximization (α = 1) and n = 1000 agents whose

types are drawn from the uniform distribution on [0, 1]. As shown in panel (a), the theoretical

virtual types indicate an optimal quantity of 250 trades. However, the first intersection of

the local empirical virtual types (the first intersection of the upper and lower “clouds” in

the figure) occurs at approximately twice as large a quantity. Indeed, the volatility of the

those estimates pulls the implied quantity traded towards the efficient quantity of 500 rather

than the optimal quantity of 250. In contrast, as shown in panel (b), the estimated virtual

types based on (3)–(5) provide a much better approximation of the theoretical virtual types

in that example and deliver an approximately optimal number of trades.
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(a) Empirical virtual types (b) Estimated virtual types based on (3)–(5)

Figure 2: Panel (a): Theoretical virtual types Φ and Γ and local empirical virtual types Φ̂
and Γ̂. Panel (b): Theoretical virtual types Φ and Γ, local empirical virtual types Φ̂ and Γ̂,
and estimated virtual types Φ̃ and Γ̃ based on (3)–(5). Both panels are based on 1000 values
and 1000 costs drawn from the uniform distribution on [0, 1].

3.2 Sequential consistency

In this subsection, we discuss the implication of sequential consistency for the virtual type

estimator.

As shown in Proposition 2, the prior-free clock auction defined in (3)–(5) is asymptot-

ically optimal. However, the asymptotic optimality result would continue to hold for any

specification of φ and γ of the form:

φ(ω) = pB − χα,jσvj and γ(ω) = pS + χα,jσ
c
j, (6)

where χα,j is nonnegative (ensuring that the mechanism is deficit free) and satisfies

lim
j→∞

χα,j
j

= α,

so that χα,j has the asymptotic properties of αj. This raises the question whether χα,j can

be pinned down if one imposes additional restrictions.

We show that the answer is affirmative if one requires a prior-free analogue of sequential

rationality that we call sequential consistency. In particular, we show that the sequential

consistency criterion defined below is satisfied if and only if, for j ∈ {1, ...,min {m,n}},

χα,j ≡ max {0, α(j − 2)− (1− α)} . (7)

To define sequential consistency, assume that the designer delegates the operation of a
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dynamic mechanism to a decision maker, such as an auctioneer. We consider whether it is

credible that an expected-payoff maximizing auctioneer would follow the protocol defined by

the mechanism. This is similar to the credibility notion developed independently by Akbar-

pour and Li (2018). Sequential consistency differs from their definition of a credible extensive

form game plus strategy profile by specifying how the auctioneer forms expectations. Our

notion addresses the commitment problem faced by an auctioneer regarding when to stop a

clock auction, assuming that the auctioneer can commit to running a clock auction.33

Consider the auctioneer’s decision whether to stop a clock auction. Let Ωj be the set of

clock auction states that follow a buyer or seller exit that results in j−1 active buyers and j−1

active sellers. We assume that agents follow their obviously dominant strategies of bidding

truthfully so that the observed exits recorded by the states in Ωj reveal v(j) ≡ (v(j), ..., v(n))

and c[j] ≡ (c[j], ..., c[m]). Assume that the auctioneer’s payoff is −∞ if the clock auction ends

with a deficit and is otherwise equal to, or perfectly aligned with, the designer’s objective

that puts weight α on revenue. We assume that the auctioneer’s action set is such that

following an exit that results in equal numbers of active buyers and sellers, the auctioneer

can choose whether to end the auction or continue (with commitment to then end the auction

should the target prices be achieved without exits).

We consider whether given ω ∈ Ωj, the plan by the auctioneer to stop the auction if

and only if φ(ω) ≥ γ(ω) is sequentially consistent with respect to the beliefs generated

by σvj and σcj that the next value and cost will be v(j−1) = v(j) + σvj and c[j−1] = c[j] −
σcj. For this to hold, at each state ω ∈ Ωj in the clock auction with clock prices pB and

pS, it must be that φ(ω) ≥ γ(ω) if and only if (i) pB ≥ pS (to ensure no deficit) and

(ii) Ev(j−1)−v(j)|σvj

[
Φα(v(j−1)) | v(j)

]
≥ Ec[j]−c[j−1]|σcj

[
Γα(c[j−1]) | c[j]

]
. We say that a prior-free

clock auction is sequentially consistent with respect to spacing estimates σv and σc if (i)

and (ii) hold.

The prior-free clock auction with φ and γ defined in (6) satisfies this condition if

v(j) + σvj − αEv(j−1)−v(j)|σvj

[
1− F (v(j−1))

f(v(j−1))
| v(j)

]
≥ c[j] − σcj + αEc[j]−c[j−1]|σcj

[
G(c[j−1])

g(c[j−1])
| c[j]

]
,

which using Lemma 1, we can rewrite as

v(j) + σvj − α(j − 1)σvj ≥ c[j] − σcj + α(j − 1)σcj

or, rearranging, as

v(j) − (α(j − 2)− (1− α))σvj ≥ c[j] + (α(j − 2)− (1− α))σcj. (8)

33McAdams and Schwarz (2007) analyze a setup in which not even that level of commitment is possible,
finding a role for delay costs, reputation, and intermediaries.
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Because we are considering a state in which the clock prices are defined by exits, pB = v(j)

and pS = c[j]. Thus, both pB ≥ pS and (8) hold if and only if

pB − χα,jσvj ≥ pS + χα,jσ
c
j, (9)

where χα,j is defined in (7). Because (9) is the criterion for ending the auction in the prior-

free optimal clock auction defined by (6)–(7), the auctioneer’s incentives are aligned with

the auction protocol.

Proposition 3 The stopping rule for the auctioneer in the prior-free clock auction defined in

(6)–(7) is sequentially consistent with respect to spacing estimators σv and σc. Furthermore,

it is the unique such clock auction up to the definition of the spacing estimators σv and σc

and the target function.

3.3 Target functions

To complete the definition of our asymptotically optimal prior-free clock auction, it remains

to specify a target function. We define a target estimator as follows: For a state ω with j−1

active buyers and sellers, we estimate τ(ω) ∈ [φ(ω), γ(ω)] that maximizes the probability of

j − 1 trades when there should be j − 1 trades, i.e., that maximizes the probability that

v(j−1) − χα,j−1σvj−1 ≥ τ(ω) ≥ c[j−1] + χα,j−1σ
c
j−1

when v(j−1) − χα,j−1σvj−1 ≥ c[j−1] + χα,j−1σ
c
j−1, under an assumption on the distributions of

v(j−1) and c[j−1].

For example, the “uniform target estimator” assumes that v(j−1) is distributed uniformly

between v(j) and v(j) + 2σvj and that c[j−1] is distributed uniformly between c[j] − 2σcj and

c[j]. Thus, the uniform target estimator is given by:34

τ(ω) = min

{
γ(ω), max

{
φ(ω),

φ(ω) + γ(ω)

2
+
(

1− α

2

) (
σvj − σcj

)}}
. (10)

According to (10), the target virtual type is the midpoint between φ(ω) and γ(ω) plus

(1 − α/2)(σvj − σcj). The second term moves the target upward (closer to γ(ω)) if σvj > σcj
to account for the expectation that an exit on the seller side is more likely than on the

buyer side for equal movements in the virtual types. Conversely, the adjustment is made in

the opposite direction if σvj < σcj. The adjustment is greater the lower is α, reflecting the

increased value of avoiding an exit when the weight on efficiency is larger. As mentioned

34This estimator maximizes the probability that v(j−1) − χα,j−1σvj−1 ≥ τ(ω) ≥ c[j−1] + χα,j−1σ
c
j−1 when

using σvj as an estimate of σvj−1, and σcj for σcj−1, and assuming that v(j−1) is distributed uniformly between
v(j) and v(j) + 2σvj and similarly for c[j−1] between c[j] − 2σcj and c[j].
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above, McAfee (1992) uses the midpoint between the standing clock prices as the target,

which corresponds to the midpoint between v(j) and c[j].

3.4 Discussion

In this subsection, we discuss the calculation of confidence intervals for the estimated gain

from continuing an auction, criteria for selecting the number of observations to be included

in the spacing estimator, and the interaction between clock auctions and the estimation of

virtual type functions.

Confidence intervals

Consider a two-sided setting with α = 1. When j − 1 buyers and sellers remain active in

the clock auction and the estimated spacings are σvj and σcj, then the estimated increase

in revenue from continuing until there is an additional exit on both sides is the additional

revenue of σvj + σcj from the remaining j − 2 trading pairs, less the revenue v(j) − c[j] from

the one lost trade:

(j − 2)(σvj + σcj)− (v(j) − c[j]).

The estimated loss in social surplus from continuing is the estimated surplus from the lost

trade, v(j) − c[j] + σvj + σcj. A confidence interval for the estimated term σvj + σcj can be

constructed using a bootstrap approach (see, e.g., Silverman, 1986, Chapter 6.4).35 This

is illustrated in Figure 3 for an example with 20 buyers and 20 sellers.36 Panel (a) shows

the estimated 95% confidence bands for the estimated virtual types assuming α = 1, given

the data available following the exit of the j-th highest valuing buyer and j-th, and panel

(b) shows the corresponding confidence bands for the estimated increase in revenue from

continuing the auction.

As can be seen from Figure 3(a), the estimated virtual value function first exceeds the

estimated virtual cost function following the exit of the 6-th highest-value buyer and 6-th

lowest-cost seller (at index j = 6). Thus, according to the rules of our prior-free clock auction

(setting aside the target function for purposes of the illustration), the auction would end

35Given v(j), generate a bootstrap sample by taking a uniform random selection of n− j + 1 elements of
v(j) with replacement and adjusting those with error terms drawn from the uniform kernel and calibrating
to the mean and variance of v(j). This bootstrap sample then implies a bootstrap value for the spacing
estimator. Repeating this procedure allows one to construct a bootstrap confidence interval.

36As an alternative, for certain choices of rn and rm, asymptotic normality results can be used to derive
confidence bounds by noting the equivalence between our estimator and the hazard rate estimator based
on the empirical cdf and nearest neighbor density estimator. On the asymptotic normality of the empirical
cdf, see van der Vaart (1998, p. 165). As shown by Moore and Yackel (1977, Theorem 2), the nearest
neighbor density estimator is asymptotically normal when rn = n2/3 and f has bounded first derivative.
Thus, attaining asymptotic normality requires faster convergence of rn

n to zero than with rn = n4/5, which
as described below is required (up to proportionality) for minimizing mean square error.
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Figure 3: Panel (a): Bootstrap 95% confidence bounds for estimated virtual types with
α = 1 given v(j) and c[j]. Panel (b): Bootstrap 95% confidence bounds for the increase in
revenue from continuing the clock auction until an additional buyer and seller exit following
the exit of the jth highest valuing buyer and lowest valuing seller. Results assume n = 20
and rn = n4/5, with values and costs drawn from the uniform distribution on [0,1].

following this exit. Turning to Figure 3(b), following the exit of the 7-th highest-value buyer

and 7-th lowest-cost seller (at index j = 7), the expected revenue change from continuing the

auction remains positive, but following the exit of the 6-th best agents, the expected change

is negative. Thus, the auctioneer’s dynamic incentive is to continue the auction until after

the exit of the 6-th best agents and then to end the auction, consistent with the protocol

defined by the mechanism.

Criteria for selecting the spacing estimator

As a matter of statistics, there is some flexibility in the precise details of the spacing estimator

used in an asymptotically optimal prior-free clock auction. The nearest neighbor estimators

that we use have bias and variance that go to zero as the initial set of agents is replicated

when rn satisfies (5), which, as noted above, holds if rn = nx for x ∈ (0, 1).

Further, nearest neighbor estimators have a mean square error of order (rn/n)4 + 1/rn,

which is minimized when rn is proportional to n4/5 (Silverman, 1986, Chapters 3 and 5.2.2),

which suggests the use of rn = n4/5. In this case, the approximate value of the mean integrated

square error tends to zero at the rate n−4/5 (Silverman, 1986, Chapter 3.7.2), which we

illustrate in the online appendix.

It follows that the nearest neighbor estimators that attain the minimum mean square

error are uniquely defined up to proportionality constants.
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Clock auctions and estimation

As shown in Proposition 1, clock auctions are not without loss of generality in the two-sided

setup. This is because the allocation and payments in the Bayesian optimal mechanism de-

pend on the types of the marginal trading agents, i.e., on the value of the lowest valuing buyer

who trades and the cost of the highest cost seller who trades. Because these types belong to

trading agents, information about them is not available in a clock auction. Interestingly, as

we now show, for consistent estimation of virtual types (which, as mentioned, is necessary

for asymptotic optimality), clock auctions are without loss of generality for asymptotically

optimal, dominant strategy mechanisms that are envy free in a sense that we are now going

to make precise.

To that end, consider first the Bayesian optimal mechanism when the distributions, and

hence the virtual type functions, are known. With known distributions, there is, obviously,

no need to estimate the virtual type functions, and the mechanism needs only elicit the

information necessary to evaluate virtual types in order to induce the most efficient traders,

according to virtual types, to trade. In contrast, a prior-free asymptotically optimal mech-

anism needs to first estimate the virtual type functions before evaluating these functions in

order to rank the realized virtual types.37 As we now argue, the data that can be used for

estimation in an asymptotically optimal clock auction are the same as the data that can

be used in any asymptotically optimal mechanism that satisfies dominant strategy incentive

compatibility and envy-freeness. It is in this sense that clock auctions are without loss of

generality with regard to estimation.38

Suppose that we have an asymptotically optimal prior-free direct mechanism that is

dominant strategy inceyentive compatible and envy free. Suppose further that for a given

realization of types, the mechanism induces trade by k buyers and k sellers. By envy-freeness

and dominant strategy incentive compatibility, the traders are the k highest valuing buyers

and the k lowest cost sellers, with each trading buyer paying the same threshold type (that

is, the lowest value such that he still trades), and each trading seller being paid the same

threshold type (that is, the highest cost such that she still trades).

From dominant strategy incentive compatibility follows further that the buyers’ common

threshold type cannot depend on the type of any trading buyer, and the sellers’ common

threshold type cannot depend on the type of any trading seller. Thus, there must be a

threshold for the buyers TBk (v(k+1), ..., v(n); c) such that each of the k trading buyers pays

37There is an apparent arbitrariness when saying that a prior-free asymptotically optimal mechanism
needs to both estimate and evaluate virtual type functions because one could also view estimation and
evaluation as a single step. However, the terminology makes precise the parallels and differences to Bayesian
mechanisms, where there is no need to estimate virtual type functions.

38The restriction to envy-free mechanisms deserves a brief elaboration. Although the dominant strategy
implementation of the Bayesian optimal mechanism satisfies envy-freeness, there are asymptotically optimal
mechanisms—such as the one of Baliga and Vohra (2003)—that are not envy free away from the limit.
Consequently, these mechanisms can use data for estimation that are not available in a clock auction.
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TBk (v(k+1), ..., v(n); c) and such that each trading buyer would no longer trade if, holding

other types fixed, he had a value less than TBk (v(k+1), ..., v(n); c). Likewise, there must be a

threshold for the sellers T Sk (c[k+1], ..., c[m]; v) such that each of the k trading sellers is paid

T Sk (c[k+1], ..., c[m]; v) and such that each trading seller would no longer trade if, holding other

types fixed, she had a cost greater than T Sk (c[k+1], ..., c[m]; v).

Asymptotic optimality of a prior-free mechanism implies that the data available to the

mechanism must be used to estimate the virtual value and cost functions. Specifically,

assume that the quantity traded is k and let Φ̂k(· | xBk ) and Γ̂k(· | xSk ) be the estimated

virtual type functions that are used to evaluate, respectively, v(k) and c[k], where xBk is the

data used to estimate the function Φ̂k and xSk is the data used to estimate the function Γ̂k.

By incentive compatibility, these functions are increasing in v(k) and c[k], respectively, and

hence invertible. It follows that the threshold types are max{v(k+1), Φ̂
−1
k (Γ̂k(c[k]; x

S
k ); xBk )} for

trading buyers and min{c[k+1], Γ̂
−1
k (Φ̂k(v(k); x

B
k ); xSk )} for trading sellers. But now we have

max{v(k+1), Φ̂
−1
k (Γ̂k(c[k]; x

S
k ); xBk )} = TBk (v(k+1), ..., v(n); c),

where TBk (v(k+1), ..., v(n); c) does not depend on v(1), ..., v(k), and

min{c[k+1], Γ̂
−1
k (Φ̂k(v(k); x

B
k ); xSk )} = T Sk (c[k+1], ..., c[m]; v),

where T Sk (c[k+1], ..., c[m]; v) is independent of c[1], ..., c[k]. It follows that xSk and xBk do not

include v(1), ..., v(k) and c[1], ..., c[k]. In other words, the data xBk and xSk used to estimate Φ̂k

and Γ̂k include only the types of nontrading agents.

Let us say that a mechanism is defined by virtual type functions if, given (possibly es-

timated) virtual type functions, it trades the largest number k such that the virtual value

associated with v(k) is greater than or equal to the virtual cost associated with c[k]. Further,

we say that two mechanisms are asymptotically equivalent if, in the limit as the number of

replicas of the initial set of agents goes to infinity, the share of agents who trade and the

expected payments for trading agents are the same. With this at hand, we have the following

result:

Proposition 4 Given an asymptotically optimal prior-free direct mechanism that is dom-

inant strategy incentive compatible and envy free, there exists an asymptotically equivalent

mechanism with those same properties that is defined by virtual type functions that are esti-

mated based only on the types of nontrading agents.

Because the types of the nontrading agents are data that are available in a clock auction,

Proposition 4 implies that clock auctions are not a restriction for the estimation of virtual

type functions for an asymptotically optimal prior-free mechanism that is dominant strategy

incentive compatible and envy free.
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4 Extensions

Thus far, we have focused on a designer whose objective is the weighted sum of revenue and

social surplus. However, our design is flexible enough to incorporate a variety of alternative

objectives and additional constraints. In particular, we can incorporate any constraint that

can be stated in terms of adjustments to the functions defining a clock auction. Here we

briefly comment on how a designer facing heterogenous groups of agents can implement caps

on the number of units that a particular group can buy or sell, impose minimal revenue

requirements in order for trade by a group to occur, or favor certain groups over others.

For the purposes of this section, we assume that agents have characteristics that are

observable to the designer, so that the designer can a priori place subsets of agents into

groups of symmetric agents while allowing for asymmetries across different groups. For

example, traders of carbon emission permits might be identifiable as either power plants,

cement manufacturers, or other manufacturers, with traders within a group being symmetric,

but with the possibility of asymmetries across groups. Similarly, in a procurement setting,

firms may differ with respect to their cost distributions, for example, because some firms are

the results of mergers (see e.g. Loertscher and Marx, 2019).

In the online appendix, we show how our analysis and clock auction generalize to such

settings. As described there, we refer to a clock auction that accommodates differences

across groups as a discriminatory clock auction. It differs from a nondiscriminatory clock

auction in that, loosely speaking, there are separate but coordinated clocks for each buyer

and seller group.

Group-specific quantity caps

A designer or regulator may want to cap the number of units that a subset of buyers acquires.

More generally, constraints of this kind can be described by a partition matroid as in Dütting

et al. (2017), which allows the feasible trading set to be defined by a maximum number of

agents from each of different buyer groups and seller groups. Such constraints can be imposed

within a discriminatory clock auction by treating that subset of buyers for which there is a

cap as a group and starting the procedure by advancing the clock price for that group until

the number of active agents in the group is reduced to the number eligible to trade. This

is implemented by defining the discriminatory clock auction mappings so that the stopping

rule cannot be satisfied until the cap for the group is met.

Revenue constraints

A discriminatory clock auction can also accommodate the requirement that members of some

buyer group contribute payments of at least R in order for any members of that group to

trade. This is accomplished by setting the estimated virtual value for that group of buyers
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equal to minus infinity as long as that group’s clock price times the number of active buyers

in the group remains below R.

Favoring groups of agents

A discriminatory clock auction is also flexible enough to allow the designer to favor a partic-

ular subset of agents over others. For example, in the case of U.S. federal acquisitions, the

“Buy American Act” specifies favoritism for domestic bidders and domestic small business

bidders (U.S. Federal Acquisition Regulation, FAR 25.105(b)). Favoritism can be accom-

plished in a discriminatory clock auction by assigning favored and non-favored agents to

separate groups, evaluating non-favored agents using virtual types that incorporate the de-

signer’s unconstrained weight α on revenue, and evaluating favored agents using virtual types

with weight αf on revenue. Favoritism then simply means that αf < α.

5 Conclusions

We develop a prior-free clock auction that is asymptotically optimal. As a clock auction, it

endows agents with obviously dominant strategies to bid truthfully and preserves the privacy

of trading agents. Methodologically, we exploit the connection between the empirical measure

of spacings between order statistics and the theoretical construct of virtual types.

Many features of the mechanisms we develop, such as the flexibility to accommodate

various constraints and to pursue a combination of revenue and surplus goals, may prove

useful in various setups and applications. While our setup is general in that it accommodates

situations in which private information pertains to one or both sides of the market, in many

markets traders decide endogenously whether to act as buyers or as sellers. Extending the

methodology of the present paper to account for the endogeneity of traders’ positions—buy,

sell, or hold—seems a promising avenue for future research.

The prior-free mechanism design approach raises the somewhat philosophical question

as to why a designer who is not endowed with a prior should be interested in asymptotic

optimality in the first place. A possible answer to this question is that asymptotic optimality

provides a reassuring evaluation and consistency criterion. Asked how well his mechanism

performs, a designer employing an asymptotically optimal mechanism facing many traders

may find it reassuring to know that he would not have chosen any other mechanism at

the outset had he then known the distributions that he has inferred now. In that sense,

asymptotic optimality, like privacy preservation, protects the designer from regret.
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A Appendix: Definition of a two-sided clock auction

The formal definition of a two-sided clock auction is given below. Following the definition,

we comment on the adaptation required for a one-sided setup.

Clock auction Cφ,γ,τ is defined as follows: For t ∈ {0, 1, ...}, the state of a clock auction

is ωt = (zt,ω
B
t ,ω

S
t ) where zt ∈ {0, 1} specifies whether the clock auction has ended (zt = 1)

or not (zt = 0), and ωBt = (NA,xB, pB) and ωSt = (MA,xS, pS) are buyer and seller states.

The components of the buyer state are: the set of active buyers NA ⊆ N with cardinality

nA, the vector of exit prices for non-active buyers xB ∈ Rn−nA , and the buyer clock price

pB ∈ R. The seller state has an analogous structure. Let Ω be the set of all possible states.

The clock auction starts in state ω0 ≡ (0,ωB0 ,ω
S
0 ), where ωB0 = (N , ∅, p) and ωS0 =

(M, ∅, p) with p < v and p > c, so that initially all agents are active. The clock auction

continues until a state is reached that has a first component equal to 1, at which point the

active buyers and sellers trade, with the active buyers paying the buyer clock price and the

active sellers receiving the seller clock price.

We require that φ : Ω → R is increasing in pB, that γ : Ω → R is increasing in pS,

and that τ : Ω → R satisfies τ(ωt) ∈ [φ(ωt), γ(ωt)] whenever φ(ωt) ≤ γ(ωt). Define

target buyer price TB(ωt) to be the buyer clock price such that φ(ω′t) is equal to τ(ωt),

where ω′t = (zt, (NA,xB, TB(ωt)),ω
S
t ), i.e., ω′t is equal to ωt but with the buyer clock

price pB replaced by the target buyer price TB(ωt). Similarly define target seller price

T S(ωt) to be the value for the seller clock price that equates γ(ω′′t ) with τ(ωt), where

ω′′t = (zt,ω
B
t , (MA,xS, T S(ωt))).

For t ∈ {0, 1, ...}, if ωBt = (NA,xB,pB), ωSt = (MA,xS, pS), and zt = 0, state ωt+1 is

determined as follows:

• If nA = mA: If nA = 0 or φ(ωt) ≥ γ(ωt), then ωt+1 = (1,ωBt ,ω
S
t ). Otherwise, proceed

as follows (the choice of which clock price to adjust first is arbitrary; clock prices can

also be adjusted simultaneously): Increase the buyer clock price from pB until either

a buyer i exits at clock price p̂B, in which case ωBt+1 = (NA\{i}, (xB, p̂B), p̂B), or the

buyer clock price reaches TB(ωt) with no exit, in which case ωBt+1 = (NA,xB, TB(ωt)).

Decrease the seller clock price from pS until either a seller j exits at p̂S, in which case

ωSt+1 = (MA\{j}, (xS, p̂S), p̂S), or the seller clock price reaches T S(ωt) with no exit, in

which case ωSt+1 = (MA,xS, T S(ωt)). If both target prices are reached with no exits,

then zt+1 = 1; otherwise zt+1 = 0.

• If nA > mA, increase the buyer clock price from pB until either a buyer i exits at p̂B, in

which case ωBt+1 = (NA\{i}, (xB, p̂B), p̂B), ωSt+1 = ωSt , and zt+1 = 0, or the buyer clock

price reaches p, in which case ωBt+1 = (N̂A,xB, p), where N̂A consists of mA randomly

selected elements of NA, ωSt+1 = ωSt , and zt+1 = 1.
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• If nA < mA, decrease the seller clock price from pS until a seller j exits at p̂S, in

which case ωBt+1 = ωBt , ω
S
t+1 = (MA\{j}, (xS, p̂S), p̂S), and zt+1 = 0, or the seller clock

price reaches p, in which case ωSt+1 = (M̂A,xS, p), where M̂A consists of nA randomly

selected elements of MA, ωBt+1 = ωBt , and zt+1 = 1.

The above definition of a clock auction for the two-sided setup is easily adapted to

the case of one-sided private information on the buyer side by, essentially, eliminating the

seller clock and the seller state. To be precise, for state ωt with nA active buyers, let

τ(ωt) ≡ c[nA] and define the corresponding target buyer price TB(ωt) as above. Given zt = 0

and ωBt = (NA,xB,pB) with nA > 0, ωt+1 is determined as follows: If φ(ωt) ≥ c[nA+1], then

ωt+1 = (1,ωBt ,ω
S
t ). Otherwise, increase the buyer clock price until either a buyer i exits at

clock price p̂B, in which case ωBt+1 = (NA\{i}, (xB, p̂B), p̂B) and zt+1 = 0, or the buyer clock

price reaches TB(ωt) with no exit, in which case ωBt+1 = (NA,xB, TB(ωt)) and zt+1 = 1.

Symmetric adjustments are made for the case of one-sided information on the seller side.

B Appendix: Proofs

Proof of Lemma 1. Take the case of costs. The proof for values is analogous. For j ∈
{1, ...,m− 1}, the density of the j-th lowest order statistic out of m draws from distribution

G is m!
(j−1)!(m−j)!G

j−1(x)(1−G(x))m−jg(x). It then follows that

Ec

[
G(c[j])

g(c[j])

]
=

∫ c

c

G(x)

g(x)

m!

(j − 1)!(m− j)!
Gj−1(x)(1−G(x))m−jg(x)dx

=

∫ c

c

m!

(j − 1)!(m− j)!
Gj(x)(1−G(x))m−jdx

= (m− j)
∫ c

c

m!

(j − 1)!(m− j)!
xGj(x)(1−G(x))m−j−1g(x)dx

−j
∫ c

c

m!

(j − 1)!(m− j)!
xGj−1(x)(1−G(x))m−jg(x)dx

= j

∫ c

c

m!

j!(m− j − 1)!
xGj(x)(1−G(x))m−j−1g(x)dx

−j
∫ c

c

m!

(j − 1)!(m− j)!
xGj−1(x)(1−G(x))m−jg(x)dx

= jEc[c[j+1] − c[j]],

where the first equality uses the definition of the expectation, the second rearranges, the

third uses integration by parts, the fourth rearranges, and the fifth again uses the definition

of the expectation. �
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Proof of Theorem 1. We present the proof for the distribution of values. The proof for the

distribution of costs follows by analogous arguments.

Define drn(z) to be the distance from z to the rn-th closest of the observations among

V1, ..., Vn, which are iid random draws from F , that are less than or equal to z. Further,

define

Urn(z) ≡ F (z)− F (z − drn(z)).

Part 1: We show first that as n→∞,

Pr

[
sup

`∈{1,...,n−rn}

∣∣∣∣ nrnUrn(V(`))− 1

∣∣∣∣ > ε

]
→ 0. (11)

By the definition of drn , the interval
[
V(`) − drn(V(`)), V(`)

]
contains rn + 1 observations,

including observations at each endpoint of the interval, and rn spacings. In particular, the

lower end of the interval is V(`+rn). Thus, for ` ∈ {1, ..., n− rn},

rn∑
j=1

(
F (V(`+j−1))− F (V(`+j))

)
= F (V(`))−F (V(`+rn)) = F (V(`))−F (V(`)−drn(V(`))) = Urn(V(`)).

Of course, then
n

rn

rn∑
j=1

(
F (V(`+j−1))− F (V(`+j))

)
=

n

rn
Urn(z).

It is well known (see, e.g., Nagaraja et al., 2015) that, letting F (V(n+1)) ≡ 0 and F (V(0)) ≡
1, the n+ 1 random variables,

F (V(n)), F (V(n−1))− F (V(n)), ..., F (V(1))− F (V(2)), 1− F (V(1))

have the same joint distribution as

Yn+1

Sn+1

, ...,
Y1
Sn+1

,

where Y1, ..., Yn+1 are independent exponential random variables with mean 1 and Sn+1 =

Y1 + ...+Yn+1. This means that
∑rn

j=1

(
F (V(`+j−1))− F (V(`+j))

)
has the same distribution as∑rn

j=1
Y`+j
Sn+1

=
∑`+rn

j=`+1
Yj
Sn+1

. Thus, n
rn
Urn(z) will converge uniformly in probability to 1 (which

would prove (11)) if we can prove that n
rn

∑`+rn
j=`+1

Yj
Sn+1

converges uniformly (over all values
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of ` ∈ {1, ..., n− rn}) in probability to 1, i.e., that for all ε > 0,

Pr

(
max

`∈{1,...,n−rn}

∣∣∣∣∣ nrn
`+rn∑
j=`+1

Yj
Sn+1

− 1

∣∣∣∣∣ > ε

)
→ 0, (12)

which we can rewrite as

Pr

(
max

`∈{1,...,n−rn}

∣∣∣∣∣ 1

Sn+1/n

`+rn∑
j=`+1

Yj
rn
− 1

∣∣∣∣∣ > ε

)
→ 0, (13)

Because Sn+1 is the sum of n + 1 iid random variables with mean 1, by the law of large

numbers Sn+1

n
converges almost surely to 1, i.e., Pr(limn→∞

Sn+1

n
= 1) = 1. Thus, (13) will

follow if we can show that the sums
∑`+rn

j=`+1
Yj
rn

are uniformly (for all ` ∈ {1, ..., n− rn}) near

1 in probability. For any ε > 0, define

Pn ≡ Pr

(
for some `,

∣∣∣∣∣
`+rn∑
j=`+1

(Yj − 1)

∣∣∣∣∣ > rnε

)
,

and note that

Pn ≤
n−rn∑
`=1

Pr

(
`+rn∑
j=`+1

(Yj − 1) > rnε

)
+

n−rn∑
`=1

Pr

(
`+rn∑
j=`+1

(Yj − 1) < −rnε

)
. (14)

We need to show that the right hand side goes to zero. Using the Chernoff bound (based on

Markov’s inequality), which says that Pr (X > 0) ≤ E
[
etX
]

for any random variable X and

t > 0 such that the right side is finite, we obtain

Pr

(
`+rn∑
j=`+1

(Yj − 1) > rnε

)
≤ E

[
et(
∑`+rn
j=`+1(Yj−1)−rnε)

]
= E

[
et(
∑`+rn
j=`+1 Yj−rn−rnε)

]
.

Letting Z ≡
∑`+rn

j=`+1 Yj, we have

Pr

(
`+rn∑
j=`+1

(Yj − 1) > rnε

)
≤ E

[
et(Z−rn−rnε)

]
= E

[
etZe−trn(1+ε)

]
= e−trn(1+ε)E

[
etZ
]
.

Because the sum of rn exponential random variables with mean 1 has the Gamma distribution

with shape parameter rn and scale parameter 1, Z is a Gamma(rn, 1) random variable.

Because the moment generating function for a Gamma(rn, 1) random variable is M(t) =
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1
(1−t)rn for 0 < t < 1, it follows that for 0 < t < 1, E[etZ ] = 1

(1−t)rn . Thus, for all 0 < t < 1,

Pr

(
`+rn∑
j=`+1

(Yj − 1) > rnε

)
≤ e−trn(1+ε)

1

(1− t)rn
=

(
e−t(1+ε)

1− t

)rn
.

Choosing the minimizing value t∗ = ε
1+ε

gives the bound

Pr

(
`+rn∑
j=`+1

(Yj − 1) > rnε

)
≤
(
e−t

∗(1+ε)

1− t∗

)rn
=
(
(1 + ε)e−ε

)rn
.

A similar bound holds for each term of the second sum on the right side of (14), and there

are n− rn terms in each sum. Therefore,

Pn ≤ 2(n− rn)
(
(1 + ε)e−ε

)rn
= 2(n− rn)

(
eε

1 + ε

)−rn
= 2(n− rn)a(ε)−rn ,

where a(ε) > 1 for ε > 0. We need to show that 2(n− rn)a(ε)−rn → 0. To do this, note that

our assumption that lnn
rn
→ 0 implies that 1

nk′(n)
→ 0, so

lim
n→∞

2(n− rn)

a(ε)rn
≤ lim

n→∞

2n

a(ε)rn

=
2

ln a(ε)
lim
n→∞

1

a(ε)rnk′(n)

≤ 2

ln a(ε)
lim
n→∞

1

nk′(n)
= 0,

where the first equality uses L’Hôpital’s rule and the second inequality uses n
arn
→ 0 (which

follows from L’Hôpital’s rule), which implies that a(ε)rn > n for n sufficiently large. The

final equality uses 1
nk′(n)

→ 0. Thus, we have shown that Pn → 0, and so (13) is proved,

which proves (11). This completes Part 1 of the proof.

Part 2: To conclude the proof, we show that

Pr

[
sup

`∈{1,...,n−rn}

∣∣∣∣Urn(V(`))

drn(V(`))
− f(V(`))

∣∣∣∣ > ε

]
→ 0. (15)

It follows from (11) that Pr
[
sup`∈{1,...,n−rn}

∣∣Urn(V(`))
∣∣ > ε

]
→ 0 and hence, because f is
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everywhere positive, that

Pr

[
sup

`∈{1,...,n−rn}

∣∣drn(V(`))
∣∣ > ε

]
→ 0. (16)

Note that∣∣∣∣Urn(V(`))

drn(V(`))
− f(V(`))

∣∣∣∣ =

∣∣∣∣F (V(`))− F (V(`) − drn(V(`)))

drn(V(`))
− f(V(`))

∣∣∣∣
=

∣∣∣∣∣ 1

drn(V(`))

∫ V(`)

V(`)−drn (V(`))

(
f(t)− f(V(`))

)
dt

∣∣∣∣∣
≤ max

t∈[V(`)−drn (V(`)),V(`)]

∣∣f(t)− f(V(`))
∣∣ ,

where the first equality uses the definition of Urn , the second equality uses the differentiability

of F . Using (16) and the uniform continuity of f (f is continuous on a compact support and

so uniformly continuous), (15) follows.

Conclusion: Thus, we have shown that

Pr

(
sup

`∈{1,...,n−rn}

∣∣∣∣ nrnUrn(V(`))− 1

∣∣∣∣ > ε

)
→ 0 and Pr

(
sup

`∈{1,...,n−rn}

∣∣∣∣Urn(V(`))

drn(V(`))
− f(V(`))

∣∣∣∣ > ε

)
→ 0.

Putting these together, we have

Pr

(
sup

`∈{1,...,n−rn}

∣∣∣∣∣ 1
n
rn
Urn(V(`))

Urn(V(`))

drn(V(`))
− f(V(`))

∣∣∣∣∣ > ε

)
→ 0,

which, rearranging, gives us

Pr

(
sup

`∈{1,...,n−rn}

∣∣∣∣rnn 1

drn(V(`))
− f(V(`))

∣∣∣∣ > ε

)
→ 0,

which completes the proof because rn
n

1
drn (V(`))

= 1
nσv`

= f̂(V(j)), which is our implied density

estimator. �
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Online Appendix: Alternative clock auctions

In this appendix we describe two alternative clock auction formats and illustrate the rate of

convergence of the optimal prior-free clock auction. In Section 1, we describe discriminatory

clock auctions in a setting in which the designer can a priori place subsets of buyers and sub-

sets of sellers into groups of symmetric agents while allowing for asymmetries across different

groups. In Section 2, we describe quasi-clock auctions that implement the Bayesian optimal

mechanism in a two-sided setup without violating privacy preservation for any trading agents

other than the marginal pair. In Section 3, we discuss and illustrate rates of convergence.

1 Discriminatory clock auctions

Generalized Bayesian mechanism design setting

We now allow, without requiring, the possibility that agents have characteristics that are

observable to the designer, so that the designer can a priori place subsets of agents into groups

of symmetric agents while allowing for asymmetries across different groups. For example,

traders of carbon emission permits might be identifiable as either power plants, cement

manufacturers, or other manufacturers, with traders within a group being symmetric, but

with the possibility of asymmetries across groups.

Let N and M denote the sets of buyers and sellers with cardinalities n and m. Let ZB

and ZS be the sets of groups for buyers and sellers when private information pertains to

both sides of the market. (When only one side is privately informed, there is, of course, no

point distinguishing between groups on the side of the market without private information.)

We refer to the setup in which |ZB| = |ZS| = 1 studied thus far as the symmetric setup. Let

nb ≥ 1 be the number of buyers in buyer group b and let ms ≥ 1 be the number of sellers

in group s, where n =
∑

b∈ZB n
b and m =

∑
s∈ZS m

s. We assume that at least one buyer

group and at least one seller group has 2 or more members. The group membership of each

buyer and seller is common knowledge.

Each buyer in group b draws his value independently from the continuously differentiable

distribution F b with support [vb, vb] and positive density f b, and each seller in group s draws

her cost independently from the continuously differentiable distribution Gs with support

[cs, cs] and positive density gs. Each agent is privately informed about his type, but the

types and distributions from which they are drawn are unknown to the mechanism designer

and the agents. The designer only knows the group identity of each buyer and seller, that

agents in the same group draw their types from the same distribution, that group-specific

weighted virtual types given by

Φb
α(v) ≡ v − α1− F b(v)

f b(v)
and Γsα(c) ≡ c+ α

Gs(c)

gs(c)
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are increasing for each buyer and seller group and that the supports satisfy the no-full trade

condition

min
s∈ZS
{cs} ≥ max

b∈ZB
vb > min

s∈ZS
{cs} ≥ max

b∈ZB
{vb},

which generalizes the no-full trade condition that c ≥ v > c ≥ v to the setup with heteroge-

neous groups.

Under the stipulated assumptions, the allocation rule for the Bayesian optimal mechanism

in the setup with two-sided private information can be described as follows: For a given

realization of values and costs (v, c), rank all weighted virtual values in decreasing and all

weighted virtual costs in increasing order, irrespective of group membership, and then have

all those buyers and sellers trade who would trade in a Walrasian market if weighted virtual

values and costs were true values and costs. That is, letting, for all i ∈ N in buyer group b

and all j ∈M in seller group s, Vi ≡ Φb
α(vi) and Cj ≡ Γsα(cj) and

V ≡ (V1, ..., Vn) and C ≡ (C1, ..., Cm),

the optimal quantity traded is given by the largest integer k satisfying V(k) ≥ C[k], where

we use the usual conventions of setting V(0) = ∞ = C[m+1] and C[0] = −∞ = V(n+1). In the

dominant strategy implementation, trading buyers in group b pay pbk and trading sellers in

group s receive psk, where

pbk = Φb−1

α

(
max{V(k+1), C[k]}

)
and psk = Γs

−1

α

(
min{C[k+1], V(k)}

)
.

When private information pertains only to buyers, the optimal quantity is the largest

index k such that V(k) ≥ c[k]. In that case, in the dominant strategy implementation,

trading buyers in group b pay pbk = Φb−1

α

(
max{V(k+1), c[k]}

)
. Analogously, when private

information pertains only to sellers, the optimal quantity is the largest index k such that

v(k) ≥ C[k], and in the dominant strategy implementation, trading sellers in group s receive

psk = Γs
−1

α

(
min{C[k+1], v(k)}

)
.

Discriminatory clock auction

In the generalization of the clock auction to the setup with heterogeneous groups of buyers

and sellers, there are separate, but synchronized, clock prices for each buyer group and

each seller group. Although buyers in different groups may pay different prices and sellers in

different groups may receive different prices, the mechanism remains envy free within groups.

A discriminatory clock auction defines state transitions for state space Ω̂, defined below,

based on buyer and seller functions φ̂ : Ω̂→ R and γ̂ : Ω̂→ R and target function τ̂ : Ω̂→ R.

Thus, we denote a discriminatory clock auction by Ĉφ̂,γ̂,τ̂ . At t ∈ {0, 1, ...}, the state is

ω̂t = (zt, ω̂
B
t , ω̂

S
t ), where zt ∈ {0, 1} specifies whether the clock auction has ended (zt = 1)
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or not (zt = 0), ω̂Bt = ×b∈ZBω̂bt , and ω̂St = ×s∈ZS ω̂st , where ω̂bt = (NAb ,xb, pb) and ω̂st =

(MAs ,xs, ps) are group-specific buyer and seller states with components analogous to the

symmetric case. Let Ω̂ be the set of all possible states. We require that φ̂ is increasing in each

pb, that γ̂ is increasing in each ps, and that, as in the symmetric case, τ̂(ω̂t) ∈ [φ̂(ω̂t), γ̂(ω̂t)]

whenever φ̂(ω̂t) ≤ γ̂(ω̂t). The state is initialized as in the symmetric case.

For t ∈ {0, 1, ...}, if zt = 0, then ω̂t+1 is determined as follows:

If
∑

b∈ZB n
Ab =

∑
s∈ZS m

As : If
∑

b∈ZB n
Ab = 0 or φ̂(ω̂t) ≥ γ̂(ω̂t), then ω̂t+1 = (1, ω̂Bt , ω̂

S
t ).

Otherwise, proceed as follows (the order in which clock prices on either side of the

market are moved is again immaterial): Increase the vector of buyer clock prices from

pB = (pb)b∈ZB by increasing the clock prices for the smallest number of buyer groups

possible so as to increase φ̂(ω̂t) until either there is an exit by a group b̂ buyer i

at clock price vector p̂B, in which case ω̂b̂t+1 = (NAb̂\{i}, (xb, p̂b̂), p̂b̂) and for b 6= b̂,

ω̂bt+1 = (NAb ,xb, p̂b), or the buyer clock prices reach with no exit p̃B such that φ̂ is

equal to τ̂(ω̂t) when it is evaluated at the state ω̂t with pB replaced by p̃B, in which

case for all b, ω̂bt+1 = (NAb ,xb, p̃b). In analogous fashion, decrease the vector of seller

clock prices and update the seller state. If both φ̂ and γ̂, evaluated at the adjusted

clock prices, reach the target τ̂(ω̂t) with no exit, then zt+1 = 1; otherwise zt+1 = 0.

If
∑

b∈ZB n
Ab >

∑
s∈ZS m

As , increase only the buyer clock prices as above until there is

an exit or all buyer clock prices reach p > maxb∈ZB v
b, and similarly for sellers if∑

b∈ZB n
Ab <

∑
s∈ZS m

As , with lower bound p < mins∈ZS c
s. The states transition

analogously to the symmetric case.

When the auction ends, active buyers pay and active sellers receive their groups’ clock

prices.

Asymptotically optimal prior-free discriminatory clock auction

Focusing on the case of two-sided private information, we show how our asymptotically

optimal prior-free clock auction can be generalized to account for differentiated groups of

buyers and sellers. The generalization for one-sided private information follows along similar

lines.

We define the prior-free discriminatory clock auction Ĉφ̂,γ̂,τ̂ that corresponds to the prior-

free optimal clock auction Cφ,γ,τ defined by (6)–(10). For each buyer group b and seller group

s, define σbj and σsj to be group-specific spacing estimates, analogous to the symmetric setup.

If ω̂t indicates, for each buyer group b, a clock price pb and number of active bidders nA
b
,

and if ω̂t indicates, for each seller group s, a clock price ps and number of active bidders

mAs , then let

φ̂(ω̂t) = min
b∈ZB s.t. nAb≥1

pb − χ
α,nAb+1

σb
nAb+1

and γ̂(ω̂t) = max
s∈ZS s.t. mAs≥1

ps + χα,mAs+1σ
s
mAs+1.
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The target function corresponding to (10) is τ̂(ω̂t) = min
{
γ̂(ω̂t),max

{
φ̂(ω̂t), δ̃

}}
, where

δ̃ satisfies∑
b∈Z̃B

1

δ̃−
(
pb−χ

α,nA
b
+1
σb
nA

b
+1

)
−(2−α)σb

nA
b
+1

=
∑

s∈Z̃S
1(

ps+χ
α,mA

s
+1
σs
mA

s
+1

)
−δ̃−(2−α)σs

mA
s
+1

,

where Z̃B is the set of buyer groups with nA
b ≥ 1 and pb − χ

α,nAb+1
σb
nAb+1

< δ̃ (so that the

target function is only defined with respect to buyer groups that still have at least one active

buyer and whose estimated virtual types are currently below the target) and Z̃S is the set

of seller groups satisfying mAs ≥ 1 and ps + χα,mAs+1σ
s
mAs+1

> δ̃.

One can show that the results on asymptotic optimality extend to heterogeneous groups.

This combined with arguments analogous to the case of symmetric buyers and symmetric

sellers establishes the following result.

Proposition A.1 In the setup with heterogeneous groups of buyers and sellers, there ex-

ists a prior-free discriminatory clock auction that is asymptotically optimal and sequentially

consistent.

2 Quasi-clock auctions

An implication of Proposition 1 in the body of the paper is that in two-sided settings the

Bayesian optimal mechanism does not permit a clock implementation. The reason for this

is that the thresholds for trading on either side of the market—for example, in the symmet-

ric setting max{v(k+1),Φ
−1
α (Γα(c[k]))} for buyers and min{c[k+1],Γ

−1
α (Φα(v(k)))} for sellers—

depend on information that is provided by an agent who optimally trades. A tradeoff thus

arises in two-sided settings between the desirable properties of clock auctions and the benefits

of Bayesian optimality.

We now briefly discuss how one could augment a clock auction and implement the

Bayesian optimal mechanism without violating privacy preservation for any trading agents

other than the marginal pair, that is, other than the buyer with value v(k) and the seller with

cost c[k] when the optimal quantity traded is k. We refer to the augmented clock auction

as a quasi-clock auction. To save space, we restrict the discussion to the setting with sym-

metric buyers and symmetric sellers. The generalization to heterogeneous groups of buyers

and sellers is a straightforward extension. Just like the clock auction, a quasi-clock auction

consists of two clocks. It proceeds similarly to the clock auction.

Assuming each agent stays active until the clock price equals his type, when the number

of active agents on each side of the market is k − 1 and the buyer and seller clocks stop

at the prices pB = v(k) and pS = c[k], the buyers with values in the vector v(k+1) and the

sellers with costs in the vector c[k+1] become inactive as in the clock auction. However, in

contrast to the clock auction, the buyer and seller with types v(k) and c[k], who have just
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exited, may still trade. In particular, they still trade if Φα(pB) ≥ Γα(pS), in which case the

trading buyers pay Φ−1α (Γα(pS)) and the trading sellers receive Γ−1α (Φα(pB)), rather than the

clock prices. If Φα(pB) < Γα(pS), then the quasi-clock auction proceeds until the earlier of

the two events: the target prices are reached or an additional agent exits.

In the quasi-clock auction, all agents are price-takers at all times. Consequently, just

like the clock auction, the quasi-clock auction endows agents with dominant strategies. It

also preserves the privacy of all but at most one trading agent on each side of the market.

However, by Li (2017, Theorem 3), it sacrifices the obviousness of the dominant strategies.

Because virtual types can be estimated analogously to the case of clock auctions, prior-free

quasi-clock auctions can also be constructed that are asymptotically optimal, and sequen-

tially consistent, and minimize mean square error among nearest neighbor estimators.

The alternative of a quasi-clock auction, which preserves the privacy of almost all trading

agents, raises the question as to why one is concerned about privacy preservation. If privacy

preservation is desired primarily to protect traders from hold-up by the designer as discussed,

e.g., by Lucking-Reiley (2000), then quasi-clock auctions arguably do as good a job as clock

auctions, provided buyers and sellers observe the clock prices on the other side of the market,

whence they can infer the prices they face. Also, although to a slightly lesser extent than clock

auctions, quasi-clock auctions protect the designer from criticism of “money left on the table”

because only the marginal traders’ values and costs are revealed. Because the difference

between the revealed types and prices will typically be “small,” quasi-clock auctions will

also not perform much worse than clock auctions if the motivation for privacy preservation

is post-auction hold-up, e.g., in the form of taxation. Therefore, if quasi-clock auctions do

not appear appealing for practical purposes, this may have less to do with their limited

ability to preserve privacy than with their failure to satisfy other desiderata such as the

obviousness of the dominant strategies and the weak group strategy-proofness this implies.39

3 Rates of convergence

In this section, we provide simulation results illustrating the performance of our prior-free

clock auction in the small. As described in Section 3.4, an rn-nearest neighbor estimator has

mean square error of order (rn/n)4+1/rn, which is minimized when rn is proportional to n4/5

(Silverman, 1986, Chapters 3 and 5.2.2), in which case the approximate value of the mean

integrated square error tends to zero at the rate n−4/5 (Silverman, 1986, Chapter 3.7.2).

To illustrate performance in the small, we focus on an asymptotically optimal clock

auction that is sequentially consistent and uses a virtual type estimator that achieves the

39The findings of Satterthwaite and Williams (2002) that for uniform distributions the efficiency loss of
any incentive compatible, ex ante budget balanced mechanism is of the same order as the gains from trade
of the marginal pair suggest that departing from clock auctions to always execute this marginal trade may
not be worth the cost.
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minimum mean square error among nearest neighbor estimators for a buyer placing weight

α ∈ [0, 1] on revenue. Specifically, we analyze the clock auction defined as follows: For any

state ω with buyer clock price pB, seller clock price pS, and an equal number j − 1 of active

buyers and sellers, the buyer and seller functions are

φ(ω) = pB − χα,jσvj and γ(ω) = pS + χα,jσ
c
j, (17)

where

χα,j ≡ max {0, α(j − 2)− (1− α)} . (18)

and

σvj ≡

{
v̂(j)−v̂(j+min{rn,n−j})

min{rn,n−j} , if j < n
1

n+1
, otherwise

and σcj ≡

{
ĉ[j+min{rm,m−j}]−ĉ[j]

min{rm,m−j} , if j < m
1

m+1
, otherwise,

(19)

where rn = n4/5.

To define the target function, we initialize the target at c, i.e., until the state ω reflects

at least one exit on each side of the market, let τ(ω) = c.40 Once there is at least one exit

on each side of the market, if the state shows an equal number j − 1 of active buyers and

sellers, then we define the target function as

τ(ω) = min

{
γ(ω), max

{
φ(ω),

φ(ω) + γ(ω)

2
+
(

1− α

2

) (
σvj − σcj

)}}
. (20)

As shown in Figure 4(a), this prior-free clock auction achieves over 80% of optimal ex-

pected revenue with only six buyer-seller pairs, and it achieves over 75% of optimal social

surplus even when there are as few as 2 buyers and 2 sellers. To illustrate results for small

markets with α away from the extremes, Figure 4(a) also shows the performance of our

prior-free clock auction relative to the α-optimal mechanism for various intermediate values

of α. Generally speaking, the smaller is α, the smaller is the impact of estimation error, and

so the better is the performance of the prior-free clock auction. However, the mechanism’s

use of the first buyer and seller exits for estimation is a greater disadvantage relative to

the α-optimal mechanism when n and α are small. Thus, for small numbers of agents, the

relative performance of the prior-free clock auction can be better for larger values of α. This

is the case in Figure 4(a), where the line for α = 0 dips below the lines for α = 1/4 and

α = 1/2 when n is small.

Our analysis encompasses the one-sided case by allowing separate values of α for buyers

and sellers and setting the value to zero for the side of the market with no private information.

40This initialization handicaps the mechanism because it means that there is no possibility that all buyers
and sellers could trade. For the comparisons provided here, it seems appropriate to eliminate the possibility
that an initial target, necessarily uninformed by any data from the mechanism, happens to permit full trade.
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(a) Two-sided: Prior-free performance relative to
the α-optimal mechanism
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(b) One-sided: Prior-free and zero-reserve perfor-
mance relative to the revenue optimal mechanism
for a designer with marginal cost 0 capacity 5, and
n buyers

Figure 4: Panel (a): Ratio of the expected weighted objective in the prior-free mechanism
defined in (6)–(10) to the α-optimal mechanism for various weights α on revenue. Panel (b):
Ratio of the expected revenue in the one-sided prior-free mechanism with αB = 1 and αS = 0
to the expected revenue in the optimal mechanism. Also shown is the ratio of the expected
revenue in the one-sided m+ 1-st price procurement with no reserve to the expected revenue
in the optimal mechanism. Both comparisons assume a designer with marginal cost zero
and capacity of 5 units. Panels (a) and (b) are both based on Monte Carlo simulation (5000
auctions) with values and costs drawn from the Uniform distribution on [0, 1].

For example, consider a one-sided setup with n potential buyers and a designer with constant

marginal cost of zero and capacity of m units.41 As shown in the example of Figure 4(b),

the prior-free one-sided mechanism performs better than a “m + 1-st” price auction for

sufficiently small n, but provides little or no advantage when n is large. In a one-sided

setup, knowledge of distributions is necessary to determine the optimal reserve price, but

this knowledge becomes less important as the number of buyers increases because the optimal

reserve price is less likely to be binding. Thus, in a one-sided setting, inferences about the

underlying distribution from bid data may be of limited value when there are many bidders.

41If we drop the assumption v < c, this fits our setup by assuming that there are m sellers without private
information whose costs are “drawn” from the degenerate distribution G with support [c, c] with c = 0 = c.
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